
Ansible 2.2 Documentation
2.4

Ansible, Inc

24, 2017

Contents

1 About Ansible 1

i

ii

CHAPTER 1

About Ansible

Welcome to the Ansible documentation!

Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks
such as continuous deployments or zero downtime rolling updates.

Ansible’s main goals are simplicity and ease-of-use. It also has a strong focus on security and reliability, featuring
a minimum of moving parts, usage of OpenSSH for transport (with an accelerated socket mode and pull modes as
alternatives), and a language that is designed around auditability by humans–even those not familiar with the program.

We believe simplicity is relevant to all sizes of environments, so we design for busy users of all types: developers,
sysadmins, release engineers, IT managers, and everyone in between. Ansible is appropriate for managing all envi-
ronments, from small setups with a handful of instances to enterprise environments with many thousands of instances.

Ansible manages machines in an agent-less manner. There is never a question of how to upgrade remote daemons or
the problem of not being able to manage systems because daemons are uninstalled. Because OpenSSH is one of the
most peer-reviewed open source components, security exposure is greatly reduced. Ansible is decentralized–it relies
on your existing OS credentials to control access to remote machines. If needed, Ansible can easily connect with
Kerberos, LDAP, and other centralized authentication management systems.

This documentation covers the current released version of Ansible (2.4) and also some development version features
(2.3). For recent features, we note in each section the version of Ansible where the feature was added.

Ansible, Inc. releases a new major release of Ansible approximately every two months. The core application evolves
somewhat conservatively, valuing simplicity in language design and setup. However, the community around new
modules and plugins being developed and contributed moves very quickly, typically adding 20 or so new modules in
each release.

Introduction

Before we dive into the really fun parts – playbooks, configuration management, deployment, and orchestration –
we’ll learn how to get Ansible installed and cover some basic concepts. We’ll also go over how to execute ad-hoc
commands in parallel across your nodes using /usr/bin/ansible, and see what sort of modules are available in Ansible’s
core (you can also write your own, which is covered later).

1

Ansible 2.2 Documentation, 2.4

Installation

Topics

• Installation

– Getting Ansible

– Basics / What Will Be Installed

– What Version To Pick?

– Control Machine Requirements

– Managed Node Requirements

– Installing the Control Machine

* Latest Release Via Yum

* Latest Releases Via Apt (Ubuntu)

* Latest Releases Via Apt (Debian)

* Latest Releases Via Portage (Gentoo)

* Latest Releases Via pkg (FreeBSD)

* Latest Releases on Mac OSX

* Latest Releases Via OpenCSW (Solaris)

* Latest Releases Via Pacman (Arch Linux)

* Latest Releases Via Pip

* Tarballs of Tagged Releases

* Running From Source

Getting Ansible

You may also wish to follow the GitHub project if you have a GitHub account. This is also where we keep the issue
tracker for sharing bugs and feature ideas.

Basics / What Will Be Installed

Ansible by default manages machines over the SSH protocol.

Once Ansible is installed, it will not add a database, and there will be no daemons to start or keep running. You only
need to install it on one machine (which could easily be a laptop) and it can manage an entire fleet of remote machines
from that central point. When Ansible manages remote machines, it does not leave software installed or running on
them, so there’s no real question about how to upgrade Ansible when moving to a new version.

What Version To Pick?

Because it runs so easily from source and does not require any installation of software on remote machines, many
users will actually track the development version.

2 Chapter 1. About Ansible

https://github.com/ansible/ansible

Ansible 2.2 Documentation, 2.4

Ansible’s release cycles are usually about four months long. Due to this short release cycle, minor bugs will generally
be fixed in the next release versus maintaining backports on the stable branch. Major bugs will still have maintenance
releases when needed, though these are infrequent.

If you are wishing to run the latest released version of Ansible and you are running Red Hat Enterprise Linux (TM),
CentOS, Fedora, Debian, or Ubuntu, we recommend using the OS package manager.

For other installation options, we recommend installing via “pip”, which is the Python package manager, though other
options are also available.

If you wish to track the development release to use and test the latest features, we will share information about running
from source. It’s not necessary to install the program to run from source.

Control Machine Requirements

Currently Ansible can be run from any machine with Python 2.6 or 2.7 installed (Windows isn’t supported for the
control machine).

: Ansible 2.2 introduces a tech preview of support for Python 3. For more information, see Python 3 Support.

This includes Red Hat, Debian, CentOS, OS X, any of the BSDs, and so on.

: As of version 2.0, Ansible uses a few more file handles to manage its forks. Mac OS X by default is configured
for a small amount of file handles, so if you want to use 15 or more forks you’ll need to raise the ulimit with sudo
launchctl limit maxfiles unlimited. This command can also fix any “Too many open files” error.

: Please note that some modules and plugins have additional requirements. For modules these need to be satisfied
on the ‘target’ machine and should be listed in the module specific docs.

Managed Node Requirements

On the managed nodes, you need a way to communicate, which is normally ssh. By default this uses sftp. If that’s not
available, you can switch to scp in ansible.cfg. You also need Python 2.6 or later.

: Ansible’s “raw” module (for executing commands in a quick and dirty way) and the script module don’t even need
that. So technically, you can use Ansible to install python-simplejson using the raw module, which then allows you to
use everything else. (That’s jumping ahead though.)

: If you have SELinux enabled on remote nodes, you will also want to install libselinux-python on them before using
any copy/file/template related functions in Ansible. You can of course still use the yum module in Ansible to install
this package on remote systems that do not have it.

: Ansible 2.2 introduces a tech preview of support for Python 3. For more information, see Python 3 Support.

By default, Ansible uses Python 2 in order to maintain compatibility with older distributions such as RHEL 6. How-
ever, some Linux distributions (Gentoo, Arch) may not have a Python 2.X interpreter installed by default. On those
systems, you should install one, and set the ‘ansible_python_interpreter’ variable in inventory (see Inventory) to point

1.1. Introduction 3

http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html

Ansible 2.2 Documentation, 2.4

at your 2.X Python. Distributions like Red Hat Enterprise Linux, CentOS, Fedora, and Ubuntu all have a 2.X inter-
preter installed by default and this does not apply to those distributions. This is also true of nearly all Unix systems.

If you need to bootstrap these remote systems by installing Python 2.X, using the ‘raw’ module will be able
to do it remotely. For example, ansible myhost --sudo -m raw -a "yum install -y python2
python-simplejson"would install Python 2.X and the simplejson module needed to run ansible and its modules.

Installing the Control Machine

Latest Release Via Yum

RPMs are available from yum for EPEL 6, 7, and currently supported Fedora distributions.

Ansible itself can manage earlier operating systems that contain Python 2.6 or higher (so also EL6).

Fedora users can install Ansible directly, though if you are using RHEL or CentOS and have not already done so,
configure EPEL

install the epel-release RPM if needed on CentOS, RHEL, or Scientific Linux
$ sudo yum install ansible

You can also build an RPM yourself. From the root of a checkout or tarball, use the make rpm command
to build an RPM you can distribute and install. Make sure you have rpm-build, make, asciidoc, git,
python-setuptools and python2-devel installed.

$ git clone git://github.com/ansible/ansible.git --recursive
$ cd ./ansible
$ make rpm
$ sudo rpm -Uvh ./rpm-build/ansible-*.noarch.rpm

Latest Releases Via Apt (Ubuntu)

Ubuntu builds are available in a PPA here.

To configure the PPA on your machine and install ansible run these commands:

$ sudo apt-get install software-properties-common
$ sudo apt-add-repository ppa:ansible/ansible
$ sudo apt-get update
$ sudo apt-get install ansible

: For the older version 1.9 we use this ppa:ansible/ansible-1.9

: On older Ubuntu distributions, “software-properties-common” is called “python-software-properties”.

Debian/Ubuntu packages can also be built from the source checkout, run:

$ make deb

You may also wish to run from source to get the latest, which is covered above.

4 Chapter 1. About Ansible

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
https://launchpad.net/~ansible/+archive/ansible

Ansible 2.2 Documentation, 2.4

Latest Releases Via Apt (Debian)

Debian users may leverage the same source as the Ubuntu PPA.

Add the following line to /etc/apt/sources.list:

deb http://ppa.launchpad.net/ansible/ansible/ubuntu trusty main

Then run these commands:

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 93C4A3FD7BB9C367
$ sudo apt-get update
$ sudo apt-get install ansible

: This method has been verified with the Trusty sources in Debian Jessie and Stretch but may not be supported in
earlier versions.

Latest Releases Via Portage (Gentoo)

$ emerge -av app-admin/ansible

To install the newest version, you may need to unmask the ansible package prior to emerging:

$ echo 'app-admin/ansible' >> /etc/portage/package.accept_keywords

: If you have Python 3 as a default Python slot on your Gentoo nodes (default setting), then you must set
ansible_python_interpreter = /usr/bin/python2 in your group or inventory variables.

Latest Releases Via pkg (FreeBSD)

$ sudo pkg install ansible

You may also wish to install from ports, run:

$ sudo make -C /usr/ports/sysutils/ansible install

Latest Releases on Mac OSX

The preferred way to install ansible on a Mac is via pip.

The instructions can be found in Latest Releases Via Pip section.

Latest Releases Via OpenCSW (Solaris)

Ansible is available for Solaris as SysV package from OpenCSW.

1.1. Introduction 5

https://www.opencsw.org/packages/ansible/

Ansible 2.2 Documentation, 2.4

pkgadd -d http://get.opencsw.org/now
/opt/csw/bin/pkgutil -i ansible

Latest Releases Via Pacman (Arch Linux)

Ansible is available in the Community repository:

$ pacman -S ansible

The AUR has a PKGBUILD for pulling directly from Github called ansible-git.

Also see the Ansible page on the ArchWiki.

: If you have Python 3 as a default Python slot on your Arch nodes (default setting), then you must set
ansible_python_interpreter = /usr/bin/python2 in your group or inventory variables.

Latest Releases Via Pip

Ansible can be installed via “pip”, the Python package manager. If ‘pip’ isn’t already available in your version of
Python, you can get pip by:

$ sudo easy_install pip

Then install Ansible with1:

$ sudo pip install ansible

Or if you are looking for the latest development version:

pip install git+git://github.com/ansible/ansible.git@devel

If you are installing on OS X Mavericks, you may encounter some noise from your compiler. A workaround is to do
the following:

$ sudo CFLAGS=-Qunused-arguments CPPFLAGS=-Qunused-arguments pip install ansible

Readers that use virtualenv can also install Ansible under virtualenv, though we’d recommend to not worry about it
and just install Ansible globally. Do not use easy_install to install ansible directly.

Tarballs of Tagged Releases

Packaging Ansible or wanting to build a local package yourself, but don’t want to do a git checkout? Tarballs of
releases are available on the Ansible downloads page.

These releases are also tagged in the git repository with the release version.

1 If you have issues with the “pycrypto” package install on Mac OSX, then you may need to try CC=clang sudo -E pip install
pycrypto.

6 Chapter 1. About Ansible

https://aur.archlinux.org/packages/ansible-git
https://wiki.archlinux.org/index.php/Ansible
http://releases.ansible.com/ansible
https://github.com/ansible/ansible/releases

Ansible 2.2 Documentation, 2.4

Running From Source

Ansible is easy to run from a checkout - root permissions are not required to use it and there is no software to actually
install. No daemons or database setup are required. Because of this, many users in our community use the development
version of Ansible all of the time so they can take advantage of new features when they are implemented and easily
contribute to the project. Because there is nothing to install, following the development version is significantly easier
than most open source projects.

: If you are intending to use Tower as the Control Machine, do not use a source install. Please use OS package
manager (like apt/yum) or pip to install a stable version.

To install from source.

$ git clone git://github.com/ansible/ansible.git --recursive
$ cd ./ansible

Using Bash:

$ source ./hacking/env-setup

Using Fish:

$. ./hacking/env-setup.fish

If you want to suppress spurious warnings/errors, use:

$ source ./hacking/env-setup -q

If you don’t have pip installed in your version of Python, install pip:

$ sudo easy_install pip

Ansible also uses the following Python modules that need to be installed1:

$ sudo pip install -r ./requirements.txt

To update ansible checkouts, use pull-with-rebase so any local changes are replayed.

$ git pull --rebase

Note: when updating ansible checkouts that are v2.2 and older, be sure to not only update the source tree, but also the
“submodules” in git which point at Ansible’s own modules.

$ git pull --rebase #same as above
$ git submodule update --init --recursive

Once running the env-setup script you’ll be running from checkout and the default inventory file will be
/etc/ansible/hosts. You can optionally specify an inventory file (see Inventory) other than /etc/ansible/hosts:

$ echo "127.0.0.1" > ~/ansible_hosts
$ export ANSIBLE_INVENTORY=~/ansible_hosts

: ANSIBLE_INVENTORY is available starting at 1.9 and substitutes the deprecated ANSIBLE_HOSTS

1.1. Introduction 7

Ansible 2.2 Documentation, 2.4

You can read more about the inventory file in later parts of the manual.

Now let’s test things with a ping command:

$ ansible all -m ping --ask-pass

You can also use “sudo make install”.

:

Introduction To Ad-Hoc Commands Examples of basic commands

Playbooks Learning ansible’s configuration management language

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Getting Started

Topics

• Getting Started

– Foreword

– Remote Connection Information

– Your first commands

– Host Key Checking

Foreword

Now that you’ve read Installation and installed Ansible, it’s time to dig in and get started with some commands.

What we are showing first are not the powerful configuration/deployment/orchestration features of Ansible. These
features are handled by playbooks which are covered in a separate section.

This section is about how to initially get going. Once you have these concepts down, read Introduction To Ad-Hoc
Commands for some more detail, and then you’ll be ready to dive into playbooks and explore the most interesting
parts!

Remote Connection Information

Before we get started, it’s important to understand how Ansible communicates with remote machines over SSH.

By default, Ansible 1.3 and later will try to use native OpenSSH for remote communication when possible. This
enables ControlPersist (a performance feature), Kerberos, and options in ~/.ssh/config such as Jump Host setup.
However, when using Enterprise Linux 6 operating systems as the control machine (Red Hat Enterprise Linux and
derivatives such as CentOS), the version of OpenSSH may be too old to support ControlPersist. On these operating
systems, Ansible will fallback into using a high-quality Python implementation of OpenSSH called ‘paramiko’. If
you wish to use features like Kerberized SSH and more, consider using Fedora, OS X, or Ubuntu as your control
machine until a newer version of OpenSSH is available for your platform – or engage ‘accelerated mode’ in Ansible.
See Accelerated Mode.

8 Chapter 1. About Ansible

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

In releases up to and including Ansible 1.2, the default was strictly paramiko. Native SSH had to be explicitly selected
with the -c ssh option or set in the configuration file.

Occasionally you’ll encounter a device that doesn’t support SFTP. This is rare, but should it occur, you can switch to
SCP mode in Configuration file.

When speaking with remote machines, Ansible by default assumes you are using SSH keys. SSH keys are encouraged
but password authentication can also be used where needed by supplying the option --ask-pass. If using sudo
features and when sudo requires a password, also supply --ask-become-pass (previously --ask-sudo-pass
which has been deprecated).

While it may be common sense, it is worth sharing: Any management system benefits from being run near the ma-
chines being managed. If you are running Ansible in a cloud, consider running it from a machine inside that cloud. In
most cases this will work better than on the open Internet.

As an advanced topic, Ansible doesn’t just have to connect remotely over SSH. The transports are pluggable, and there
are options for managing things locally, as well as managing chroot, lxc, and jail containers. A mode called ‘ansible-
pull’ can also invert the system and have systems ‘phone home’ via scheduled git checkouts to pull configuration
directives from a central repository.

Your first commands

Now that you’ve installed Ansible, it’s time to get started with some basics.

Edit (or create) /etc/ansible/hosts and put one or more remote systems in it. Your public SSH key should be
located in authorized_keys on those systems:

192.0.2.50
aserver.example.org
bserver.example.org

This is an inventory file, which is also explained in greater depth here: Inventory.

We’ll assume you are using SSH keys for authentication. To set up SSH agent to avoid retyping passwords, you can
do:

$ ssh-agent bash
$ ssh-add ~/.ssh/id_rsa

(Depending on your setup, you may wish to use Ansible’s --private-key option to specify a pem file instead)

Now ping all your nodes:

$ ansible all -m ping

Ansible will attempt to remote connect to the machines using your current user name, just like SSH would. To override
the remote user name, just use the ‘-u’ parameter.

If you would like to access sudo mode, there are also flags to do that:

as bruce
$ ansible all -m ping -u bruce
as bruce, sudoing to root
$ ansible all -m ping -u bruce --sudo
as bruce, sudoing to batman
$ ansible all -m ping -u bruce --sudo --sudo-user batman

With latest version of ansible `sudo` is deprecated so use become
as bruce, sudoing to root

1.1. Introduction 9

Ansible 2.2 Documentation, 2.4

$ ansible all -m ping -u bruce -b
as bruce, sudoing to batman
$ ansible all -m ping -u bruce -b --become-user batman

(The sudo implementation is changeable in Ansible’s configuration file if you happen to want to use a sudo replace-
ment. Flags passed to sudo (like -H) can also be set there.)

Now run a live command on all of your nodes:

$ ansible all -a "/bin/echo hello"

Congratulations! You’ve just contacted your nodes with Ansible. It’s soon going to be time to: read about some more
real-world cases in Introduction To Ad-Hoc Commands, explore what you can do with different modules, and to learn
about the Ansible Playbooks language. Ansible is not just about running commands, it also has powerful configuration
management and deployment features. There’s more to explore, but you already have a fully working infrastructure!

Tips

When running commands, you can specify the local server by using “localhost” or “127.0.0.1” for the server name.

Example:

$ ansible localhost -m ping -e 'ansible_python_interpreter="/usr/bin/env python"'

You can specify localhost explicitly by adding this to your inventory file:

localhost ansible_connection=local ansible_python_interpreter="/usr/bin/env python"

Host Key Checking

Ansible 1.2.1 and later have host key checking enabled by default.

If a host is reinstalled and has a different key in ‘known_hosts’, this will result in an error message until corrected. If
a host is not initially in ‘known_hosts’ this will result in prompting for confirmation of the key, which results in an
interactive experience if using Ansible, from say, cron. You might not want this.

If you understand the implications and wish to disable this behavior, you can do so by editing /etc/ansible/
ansible.cfg or ~/.ansible.cfg:

[defaults]
host_key_checking = False

Alternatively this can be set by an environment variable:

$ export ANSIBLE_HOST_KEY_CHECKING=False

Also note that host key checking in paramiko mode is reasonably slow, therefore switching to ‘ssh’ is also recom-
mended when using this feature. Ansible will log some information about module arguments on the remote system
in the remote syslog, unless a task or play is marked with a “no_log: True” attribute. This is explained later.

To enable basic logging on the control machine see Configuration file document and set the ‘log_path’ configuration
file setting. Enterprise users may also be interested in Ansible Tower. Tower provides a very robust database logging
feature where it is possible to drill down and see history based on hosts, projects, and particular inventories over time
– explorable both graphically and through a REST API.

:

Inventory More information about inventory

10 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Introduction To Ad-Hoc Commands Examples of basic commands

Playbooks Learning Ansible’s configuration management language

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Inventory

Topics

• Inventory

– Hosts and Groups

– Host Variables

– Group Variables

– Groups of Groups, and Group Variables

– Default groups

– Splitting Out Host and Group Specific Data

– List of Behavioral Inventory Parameters

– Non-SSH connection types

Ansible works against multiple systems in your infrastructure at the same time. It does this by selecting portions of
systems listed in Ansible’s inventory, which defaults to being saved in the location /etc/ansible/hosts. You
can specify a different inventory file using the -i <path> option on the command line.

Not only is this inventory configurable, but you can also use multiple inventory files at the same time and pull inventory
from dynamic or cloud sources, as described in Dynamic Inventory. Introduced in version 2.4, Ansible has inventory
plugins to make this flexible and customizable.

Hosts and Groups

The inventory file can be in one of many formats, depending on the inventory plugins you have. For this example, the
format for /etc/ansible/hosts is an INI-like (one of Ansible’s defaults) and looks like this:

.. code-block:: ini

mail.example.com

[webservers] foo.example.com bar.example.com

[dbservers] one.example.com two.example.com three.example.com

The headings in brackets are group names, which are used in classifying systems and deciding what systems you are
controlling at what times and for what purpose.

It is ok to put systems in more than one group, for instance a server could be both a webserver and a dbserver. If you
do, note that variables will come from all of the groups they are a member of. Variable precedence is detailed in a later
chapter.

1.1. Introduction 11

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

If you have hosts that run on non-standard SSH ports you can put the port number after the hostname with a colon.
Ports listed in your SSH config file won’t be used with the paramiko connection but will be used with the openssh
connection.

To make things explicit, it is suggested that you set them if things are not running on the default port:

badwolf.example.com:5309

Suppose you have just static IPs and want to set up some aliases that live in your host file, or you are connecting
through tunnels. You can also describe hosts like this:

jumper ansible_port=5555 ansible_host=192.0.2.50

In the above example, trying to ansible against the host alias “jumper” (which may not even be a real hostname)
will contact 192.0.2.50 on port 5555. Note that this is using a feature of the inventory file to define some special
variables. Generally speaking this is not the best way to define variables that describe your system policy, but we’ll
share suggestions on doing this later. We’re just getting started.

Adding a lot of hosts? If you have a lot of hosts following similar patterns you can do this rather than listing each
hostname:

[webservers]
www[01:50].example.com

For numeric patterns, leading zeros can be included or removed, as desired. Ranges are inclusive. You can also define
alphabetic ranges:

[databases]
db-[a:f].example.com

: Ansible 2.0 has deprecated the “ssh” from ansible_ssh_user, ansible_ssh_host, and
ansible_ssh_port to become ansible_user, ansible_host, and ansible_port. If you are using
a version of Ansible prior to 2.0, you should continue using the older style variables (ansible_ssh_*). These
shorter variables are ignored, without warning, in older versions of Ansible.

You can also select the connection type and user on a per host basis:

[targets]

localhost ansible_connection=local
other1.example.com ansible_connection=ssh ansible_user=mpdehaan
other2.example.com ansible_connection=ssh ansible_user=mdehaan

As mentioned above, setting these in the inventory file is only a shorthand, and we’ll discuss how to store them in
individual files in the ‘host_vars’ directory a bit later on.

Host Variables

As alluded to above, it is easy to assign variables to hosts that will be used later in playbooks:

[atlanta]
host1 http_port=80 maxRequestsPerChild=808
host2 http_port=303 maxRequestsPerChild=909

12 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Group Variables

Variables can also be applied to an entire group at once:

[atlanta]
host1
host2

[atlanta:vars]
ntp_server=ntp.atlanta.example.com
proxy=proxy.atlanta.example.com

Be aware that this is only a convenient way to apply variables to multiple hosts at once; even though you can target
hosts by group, variables are always flattened to the host level before a play is executed.

Groups of Groups, and Group Variables

It is also possible to make groups of groups using the :children suffix. Just like above, you can apply variables
using :vars:

[atlanta]
host1
host2

[raleigh]
host2
host3

[southeast:children]
atlanta
raleigh

[southeast:vars]
some_server=foo.southeast.example.com
halon_system_timeout=30
self_destruct_countdown=60
escape_pods=2

[usa:children]
southeast
northeast
southwest
northwest

If you need to store lists or hash data, or prefer to keep host and group specific variables separate from the inventory
file, see the next section. Child groups have a couple of properties to note:

• First, any host that is member of a child group is automatically a member of the parent group.

• Second, a child group’s variables will have higher precedence (override) a parent group’s variables.

Default groups

There are two default groups: all and ungrouped. all contains every host. ungrouped contains all hosts that
don’t have another group aside from all.

1.1. Introduction 13

Ansible 2.2 Documentation, 2.4

Splitting Out Host and Group Specific Data

The preferred practice in Ansible is actually not to store variables in the main inventory file.

In addition to storing variables directly in the INI file, host and group variables can be stored in individual files relative
to the inventory file.

These variable files are in YAML format. Valid file extensions include ‘.yml’, ‘.yaml’, ‘.json’, or no file extension.
See YAML Syntax if you are new to YAML.

Assuming the inventory file path is:

/etc/ansible/hosts

If the host is named ‘foosball’, and in groups ‘raleigh’ and ‘webservers’, variables in YAML files at the following
locations will be made available to the host:

/etc/ansible/group_vars/raleigh # can optionally end in '.yml', '.yaml', or '.json'
/etc/ansible/group_vars/webservers
/etc/ansible/host_vars/foosball

For instance, suppose you have hosts grouped by datacenter, and each datacenter uses some different servers. The data
in the groupfile ‘/etc/ansible/group_vars/raleigh’ for the ‘raleigh’ group might look like:

ntp_server: acme.example.org
database_server: storage.example.org

It is ok if these files do not exist, as this is an optional feature.

As an advanced use-case, you can create directories named after your groups or hosts, and Ansible will read all the
files in these directories. An example with the ‘raleigh’ group:

/etc/ansible/group_vars/raleigh/db_settings
/etc/ansible/group_vars/raleigh/cluster_settings

All hosts that are in the ‘raleigh’ group will have the variables defined in these files available to them. This can be very
useful to keep your variables organized when a single file starts to be too big, or when you want to use Ansible Vault
on a part of a group’s variables. Note that this only works on Ansible 1.4 or later.

Tip: In Ansible 1.2 or later the group_vars/ and host_vars/ directories can exist in the playbook directory
OR the inventory directory. If both paths exist, variables in the playbook directory will override variables set in the
inventory directory.

Tip: Keeping your inventory file and variables in a git repo (or other version control) is an excellent way to track
changes to your inventory and host variables.

List of Behavioral Inventory Parameters

As alluded to above, setting the following variables controls how ansible interacts with remote hosts.

Host connection:

ansible_connection Connection type to the host. This can be the name of any of ansible’s connection plugins. SSH
protocol types are smart, ssh or paramiko. The default is smart. Non-SSH based types are described in the
next section.

14 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

: Ansible 2.0 has deprecated the “ssh” from ansible_ssh_user, ansible_ssh_host, and
ansible_ssh_port to become ansible_user, ansible_host, and ansible_port. If you are using
a version of Ansible prior to 2.0, you should continue using the older style variables (ansible_ssh_*). These
shorter variables are ignored, without warning, in older versions of Ansible.

General for all connections:

ansible_host The name of the host to connect to, if different from the alias you wish to give to it.

ansible_port The ssh port number, if not 22

ansible_user The default ssh user name to use.

Specific to the SSH connection:

ansible_ssh_pass The ssh password to use (never store this variable in plain text; always use a vault. See Variables
and Vaults)

ansible_ssh_private_key_file Private key file used by ssh. Useful if using multiple keys and you don’t want to use
SSH agent.

ansible_ssh_common_args This setting is always appended to the default command line for sftp, scp, and ssh.
Useful to configure a ProxyCommand for a certain host (or group).

ansible_sftp_extra_args This setting is always appended to the default sftp command line.

ansible_scp_extra_args This setting is always appended to the default scp command line.

ansible_ssh_extra_args This setting is always appended to the default ssh command line.

ansible_ssh_pipelining Determines whether or not to use SSH pipelining. This can override the pipelining
setting in ansible.cfg.

ansible_ssh_executable (added in version 2.2) This setting overrides the default behavior to use the system ssh.
This can override the ssh_executable setting in ansible.cfg.

Privilege escalation (see Ansible Privilege Escalation for further details):

ansible_become Equivalent to ansible_sudo or ansible_su, allows to force privilege escalation

ansible_become_method Allows to set privilege escalation method

ansible_become_user Equivalent to ansible_sudo_user or ansible_su_user, allows to set the user you
become through privilege escalation

ansible_become_pass Equivalent to ansible_sudo_pass or ansible_su_pass, allows you to set the privi-
lege escalation password (never store this variable in plain text; always use a vault. See Variables and Vaults)

Remote host environment parameters:

ansible_shell_type The shell type of the target system. You should not use this setting unless you have set the
ansible_shell_executable to a non-Bourne (sh) compatible shell. By default commands are formatted
using sh-style syntax. Setting this to csh or fish will cause commands executed on target systems to follow
those shell’s syntax instead.

ansible_python_interpreter The target host python path. This is useful for systems with more than one Python or
not located at /usr/bin/python such as *BSD, or where /usr/bin/python is not a 2.X series Python.
We do not use the /usr/bin/env mechanism as that requires the remote user’s path to be set right and
also assumes the python executable is named python, where the executable might be named something like
python2.6.

ansible_*_interpreter Works for anything such as ruby or perl and works just like
ansible_python_interpreter. This replaces shebang of modules which will run on that host.

1.1. Introduction 15

Ansible 2.2 Documentation, 2.4

2.1 .

ansible_shell_executable This sets the shell the ansible controller will use on the target machine, overrides
executable in ansible.cfg which defaults to /bin/sh. You should really only change it if is not
possible to use /bin/sh (i.e. /bin/sh is not installed on the target machine or cannot be run from sudo.).

Examples from an Ansible-INI host file:

some_host ansible_port=2222 ansible_user=manager
aws_host ansible_ssh_private_key_file=/home/example/.ssh/aws.pem
freebsd_host ansible_python_interpreter=/usr/local/bin/python
ruby_module_host ansible_ruby_interpreter=/usr/bin/ruby.1.9.3

Non-SSH connection types

As stated in the previous section, Ansible executes playbooks over SSH but it is not limited to this connection type.
With the host specific parameter ansible_connection=<connector>, the connection type can be changed.
The following non-SSH based connectors are available:

local

This connector can be used to deploy the playbook to the control machine itself.

docker

This connector deploys the playbook directly into Docker containers using the local Docker client. The following
parameters are processed by this connector:

ansible_host The name of the Docker container to connect to.

ansible_user The user name to operate within the container. The user must exist inside the container.

ansible_become If set to true the become_user will be used to operate within the container.

ansible_docker_extra_args Could be a string with any additional arguments understood by Docker, which are not
command specific. This parameter is mainly used to configure a remote Docker daemon to use.

Here is an example of how to instantly deploy to created containers:

- name: create jenkins container
docker_container:
docker_host: myserver.net:4243
name: my_jenkins
image: jenkins

- name: add container to inventory
add_host:
name: my_jenkins
ansible_connection: docker
ansible_docker_extra_args: "--tlsverify --tlscacert=/path/to/ca.pem --tlscert=/

→˓path/to/client-cert.pem --tlskey=/path/to/client-key.pem -H=tcp://myserver.net:4243"
ansible_user: jenkins

changed_when: false

- name: create directory for ssh keys
delegate_to: my_jenkins
file:
path: "/var/jenkins_home/.ssh/jupiter"
state: directory

:

16 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Dynamic Inventory Pulling inventory from dynamic sources, such as cloud providers

Introduction To Ad-Hoc Commands Examples of basic commands

Playbooks Learning Ansible’s configuration, deployment, and orchestration language.

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Dynamic Inventory

Topics

• Dynamic Inventory

– Example: The Cobbler External Inventory Script

– Example: AWS EC2 External Inventory Script

– Example: OpenStack External Inventory Script

* Explicit use of inventory script

* Implicit use of inventory script

* Refresh the cache

– Other inventory scripts

– Using Inventory Directories and Multiple Inventory Sources

– Static Groups of Dynamic Groups

Often a user of a configuration management system will want to keep inventory in a different software system. Ansible
provides a basic text-based system as described in Inventory but what if you want to use something else?

Frequent examples include pulling inventory from a cloud provider, LDAP, Cobbler, or a piece of expensive enterprisey
CMDB software.

Ansible easily supports all of these options via an external inventory system. The contrib/inventory directory contains
some of these already – including options for EC2/Eucalyptus, Rackspace Cloud, and OpenStack, examples of some
of which will be detailed below.

Ansible Tower also provides a database to store inventory results that is both web and REST Accessible. Tower syncs
with all Ansible dynamic inventory sources you might be using, and also includes a graphical inventory editor. By
having a database record of all of your hosts, it’s easy to correlate past event history and see which ones have had
failures on their last playbook runs.

For information about writing your own dynamic inventory source, see Developing Dynamic Inventory Sources.

Example: The Cobbler External Inventory Script

It is expected that many Ansible users with a reasonable amount of physical hardware may also be Cobbler users.
(note: Cobbler was originally written by Michael DeHaan and is now led by James Cammarata, who also works for
Ansible, Inc).

While primarily used to kickoff OS installations and manage DHCP and DNS, Cobbler has a generic layer that allows
it to represent data for multiple configuration management systems (even at the same time), and has been referred to
as a ‘lightweight CMDB’ by some admins.

1.1. Introduction 17

http://groups.google.com/group/ansible-project
http://irc.freenode.net
http://cobbler.github.com
http://cobbler.github.com

Ansible 2.2 Documentation, 2.4

To tie Ansible’s inventory to Cobbler (optional), copy this script to /etc/ansible and chmod +x the file. cob-
blerd will now need to be running when you are using Ansible and you’ll need to use Ansible’s -i command line
option (e.g. -i /etc/ansible/cobbler.py). This particular script will communicate with Cobbler using
Cobbler’s XMLRPC API.

Also a cobbler.ini file should be added to /etc/ansible so Ansible knows where the Cobbler server is and
some cache improvements can be used. For example:

[cobbler]

Set Cobbler's hostname or IP address
host = http://127.0.0.1/cobbler_api

API calls to Cobbler can be slow. For this reason, we cache the results of an API
call. Set this to the path you want cache files to be written to. Two files
will be written to this directory:
- ansible-cobbler.cache
- ansible-cobbler.index

cache_path = /tmp

The number of seconds a cache file is considered valid. After this many
seconds, a new API call will be made, and the cache file will be updated.

cache_max_age = 900

First test the script by running /etc/ansible/cobbler.py directly. You should see some JSON data output,
but it may not have anything in it just yet.

Let’s explore what this does. In Cobbler, assume a scenario somewhat like the following:

cobbler profile add --name=webserver --distro=CentOS6-x86_64
cobbler profile edit --name=webserver --mgmt-classes="webserver" --ksmeta="a=2 b=3"
cobbler system edit --name=foo --dns-name="foo.example.com" --mgmt-classes="atlanta" -
→˓-ksmeta="c=4"
cobbler system edit --name=bar --dns-name="bar.example.com" --mgmt-classes="atlanta" -
→˓-ksmeta="c=5"

In the example above, the system ‘foo.example.com’ will be addressable by ansible directly, but will also be address-
able when using the group names ‘webserver’ or ‘atlanta’. Since Ansible uses SSH, we’ll try to contact system foo
over ‘foo.example.com’, only, never just ‘foo’. Similarly, if you try “ansible foo” it wouldn’t find the system... but
“ansible ‘foo*”’ would, because the system DNS name starts with ‘foo’.

The script doesn’t just provide host and group info. In addition, as a bonus, when the ‘setup’ module is run (which
happens automatically when using playbooks), the variables ‘a’, ‘b’, and ‘c’ will all be auto-populated in the templates:

file: /srv/motd.j2
Welcome, I am templated with a value of a={{ a }}, b={{ b }}, and c={{ c }}

Which could be executed just like this:

ansible webserver -m setup
ansible webserver -m template -a "src=/tmp/motd.j2 dest=/etc/motd"

: The name ‘webserver’ came from Cobbler, as did the variables for the config file. You can still pass in your own
variables like normal in Ansible, but variables from the external inventory script will override any that have the same
name.

18 Chapter 1. About Ansible

https://raw.github.com/ansible/ansible/devel/contrib/inventory/cobbler.py

Ansible 2.2 Documentation, 2.4

So, with the template above (motd.j2), this would result in the following data being written to /etc/motd for
system ‘foo’:

Welcome, I am templated with a value of a=2, b=3, and c=4

And on system ‘bar’ (bar.example.com):

Welcome, I am templated with a value of a=2, b=3, and c=5

And technically, though there is no major good reason to do it, this also works too:

ansible webserver -m shell -a "echo {{ a }}"

So in other words, you can use those variables in arguments/actions as well.

Example: AWS EC2 External Inventory Script

If you use Amazon Web Services EC2, maintaining an inventory file might not be the best approach, because hosts
may come and go over time, be managed by external applications, or you might even be using AWS autoscaling. For
this reason, you can use the EC2 external inventory script.

You can use this script in one of two ways. The easiest is to use Ansible’s -i command line option and specify the
path to the script after marking it executable:

ansible -i ec2.py -u ubuntu us-east-1d -m ping

The second option is to copy the script to /etc/ansible/hosts and chmod +x it. You will also need to copy the ec2.ini
file to /etc/ansible/ec2.ini. Then you can run ansible as you would normally.

To successfully make an API call to AWS, you will need to configure Boto (the Python interface to AWS). There are
a variety of methods available, but the simplest is just to export two environment variables:

export AWS_ACCESS_KEY_ID='AK123'
export AWS_SECRET_ACCESS_KEY='abc123'

You can test the script by itself to make sure your config is correct:

cd contrib/inventory
./ec2.py --list

After a few moments, you should see your entire EC2 inventory across all regions in JSON.

If you use Boto profiles to manage multiple AWS accounts, you can pass --profile PROFILE name to the ec2.
py script. An example profile might be:

[profile dev]
aws_access_key_id = <dev access key>
aws_secret_access_key = <dev secret key>

[profile prod]
aws_access_key_id = <prod access key>
aws_secret_access_key = <prod secret key>

You can then run ec2.py --profile prod to get the inventory for the prod account, although this op-
tion is not supported by ansible-playbook. You can also use the AWS_PROFILE variable - for example:
AWS_PROFILE=prod ansible-playbook -i ec2.py myplaybook.yml

1.1. Introduction 19

https://raw.github.com/ansible/ansible/devel/contrib/inventory/ec2.py
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.ini
http://docs.pythonboto.org/en/latest/boto_config_tut.html

Ansible 2.2 Documentation, 2.4

Since each region requires its own API call, if you are only using a small set of regions, you can edit the ec2.ini
file and comment out the regions you are not using.

There are other config options in ec2.ini, including cache control and destination variables. By default, the ec2.
ini file is configured for all Amazon cloud services, but you can comment out any features that aren’t applicable.
For example, if you don’t have RDS or elasticache, you can set them to False

[ec2]
...

To exclude RDS instances from the inventory, uncomment and set to False.
rds = False

To exclude ElastiCache instances from the inventory, uncomment and set to False.
elasticache = False
...

At their heart, inventory files are simply a mapping from some name to a destination address. The default ec2.ini
settings are configured for running Ansible from outside EC2 (from your laptop for example) – and this is not the most
efficient way to manage EC2.

If you are running Ansible from within EC2, internal DNS names and IP addresses may make more sense than public
DNS names. In this case, you can modify the destination_variable in ec2.ini to be the private DNS name
of an instance. This is particularly important when running Ansible within a private subnet inside a VPC, where the
only way to access an instance is via its private IP address. For VPC instances, vpc_destination_variable in ec2.ini
provides a means of using which ever boto.ec2.instance variable makes the most sense for your use case.

The EC2 external inventory provides mappings to instances from several groups:

Global All instances are in group ec2.

Instance ID These are groups of one since instance IDs are unique. e.g. i-00112233 i-a1b1c1d1

Region A group of all instances in an AWS region. e.g. us-east-1 us-west-2

Availability Zone A group of all instances in an availability zone. e.g. us-east-1a us-east-1b

Security Group Instances belong to one or more security groups. A group is created for each security
group, with all characters except alphanumerics, converted to underscores (_). Each group is pre-
fixed by security_group_. Currently, dashes (-) are also converted to underscores (_). You can
change using the replace_dash_in_groups setting in ec2.ini (this has changed across several versions so
check the ec2.ini for details). e.g. security_group_default security_group_webservers
security_group_Pete_s_Fancy_Group

Tags Each instance can have a variety of key/value pairs associated with it called Tags. The
most common tag key is ‘Name’, though anything is possible. Each key/value pair is its
own group of instances, again with special characters converted to underscores, in the format
tag_KEY_VALUE e.g. tag_Name_Web can be used as is tag_Name_redis-master-001 becomes
tag_Name_redis_master_001 tag_aws_cloudformation_logical-id_WebServerGroup
becomes tag_aws_cloudformation_logical_id_WebServerGroup

When the Ansible is interacting with a specific server, the EC2 inventory script is called again with the --host
HOST option. This looks up the HOST in the index cache to get the instance ID, and then makes an API call to AWS
to get information about that specific instance. It then makes information about that instance available as variables to
your playbooks. Each variable is prefixed by ec2_. Here are some of the variables available:

• ec2_architecture

• ec2_description

• ec2_dns_name

20 Chapter 1. About Ansible

http://docs.pythonboto.org/en/latest/ref/ec2.html#module-boto.ec2.instance

Ansible 2.2 Documentation, 2.4

• ec2_id

• ec2_image_id

• ec2_instance_type

• ec2_ip_address

• ec2_kernel

• ec2_key_name

• ec2_launch_time

• ec2_monitored

• ec2_ownerId

• ec2_placement

• ec2_platform

• ec2_previous_state

• ec2_private_dns_name

• ec2_private_ip_address

• ec2_public_dns_name

• ec2_ramdisk

• ec2_region

• ec2_root_device_name

• ec2_root_device_type

• ec2_security_group_ids

• ec2_security_group_names

• ec2_spot_instance_request_id

• ec2_state

• ec2_state_code

• ec2_state_reason

• ec2_status

• ec2_subnet_id

• ec2_tag_Name

• ec2_tenancy

• ec2_virtualization_type

• ec2_vpc_id

Both ec2_security_group_ids and ec2_security_group_names are comma-separated lists of all secu-
rity groups. Each EC2 tag is a variable in the format ec2_tag_KEY.

To see the complete list of variables available for an instance, run the script by itself:

cd contrib/inventory
./ec2.py --host ec2-12-12-12-12.compute-1.amazonaws.com

1.1. Introduction 21

Ansible 2.2 Documentation, 2.4

Note that the AWS inventory script will cache results to avoid repeated API calls, and this cache setting is configurable
in ec2.ini. To explicitly clear the cache, you can run the ec2.py script with the --refresh-cache parameter:

./ec2.py --refresh-cache

Example: OpenStack External Inventory Script

If you use an OpenStack based cloud, instead of manually maintaining your own inventory file, you can use the
openstack.py dynamic inventory to pull information about your compute instances directly from OpenStack.

You can download the latest version of the OpenStack inventory script at: https://raw.githubusercontent.com/ansible/
ansible/devel/contrib/inventory/openstack.py

You can use the inventory script explicitly (by passing the -i openstack.py argument to Ansible) or implicitly (by
placing the script at /etc/ansible/hosts).

Explicit use of inventory script

Download the latest version of the OpenStack dynamic inventory script and make it executable:

wget https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/
→˓openstack.py
chmod +x openstack.py

Source an OpenStack RC file:

source openstack.rc

: An OpenStack RC file contains the environment variables required by the client tools to establish a connection with
the cloud provider, such as the authentication URL, user name, password and region name. For more information
on how to download, create or source an OpenStack RC file, please refer to Set environment variables using the
OpenStack RC file.

You can confirm the file has been successfully sourced by running a simple command, such as nova list and ensuring
it return no errors.

: The OpenStack command line clients are required to run the nova list command. For more information on how to
install them, please refer to Install the OpenStack command-line clients.

You can test the OpenStack dynamic inventory script manually to confirm it is working as expected:

./openstack.py --list

After a few moments you should see some JSON output with information about your compute instances.

Once you confirm the dynamic inventory script is working as expected, you can tell Ansible to use the openstack.py
script as an inventory file, as illustrated below:

ansible -i openstack.py all -m ping

22 Chapter 1. About Ansible

https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/openstack.py
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/openstack.py
http://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html
http://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html
http://docs.openstack.org/user-guide/common/cli_install_openstack_command_line_clients.html

Ansible 2.2 Documentation, 2.4

Implicit use of inventory script

Download the latest version of the OpenStack dynamic inventory script, make it executable and copy it to
/etc/ansible/hosts:

wget https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/
→˓openstack.py
chmod +x openstack.py
sudo cp openstack.py /etc/ansible/hosts

Download the sample configuration file, modify it to suit your needs and copy it to /etc/ansible/openstack.yml:

wget https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/
→˓openstack.yml
vi openstack.yml
sudo cp openstack.yml /etc/ansible/

You can test the OpenStack dynamic inventory script manually to confirm it is working as expected:

/etc/ansible/hosts --list

After a few moments you should see some JSON output with information about your compute instances.

Refresh the cache

Note that the OpenStack dynamic inventory script will cache results to avoid repeated API calls. To explicitly clear
the cache, you can run the openstack.py (or hosts) script with the --refresh parameter:

./openstack.py --refresh --list

Other inventory scripts

In addition to Cobbler and EC2, inventory scripts are also available for:

BSD Jails
DigitalOcean
Google Compute Engine
Linode
OpenShift
OpenStack Nova
Ovirt
SpaceWalk
Vagrant (not to be confused with the provisioner in vagrant, which is preferred)
Zabbix

Sections on how to use these in more detail will be added over time, but by looking at the “contrib/inventory” directory
of the Ansible checkout it should be very obvious how to use them. The process for the AWS inventory script is the
same.

If you develop an interesting inventory script that might be general purpose, please submit a pull request – we’d likely
be glad to include it in the project.

1.1. Introduction 23

Ansible 2.2 Documentation, 2.4

Using Inventory Directories and Multiple Inventory Sources

If the location given to -i in Ansible is a directory (or as so configured in ansible.cfg), Ansible can use multiple
inventory sources at the same time. When doing so, it is possible to mix both dynamic and statically managed inventory
sources in the same ansible run. Instant hybrid cloud!

In an inventory directory, executable files will be treated as dynamic inventory sources and most other files as static
sources. Files which end with any of the following will be ignored:

~, .orig, .bak, .ini, .cfg, .retry, .pyc, .pyo

You can replace this list with your own selection by configuring an inventory_ignore_extensions list in
ansible.cfg, or setting the ANSIBLE_INVENTORY_IGNORE environment variable. The value in either case should
be a comma-separated list of patterns, as shown above.

Any group_vars and host_vars subdirectories in an inventory directory will be interpreted as expected, making
inventory directories a powerful way to organize different sets of configurations.

Static Groups of Dynamic Groups

When defining groups of groups in the static inventory file, the child groups must also be defined in the static inventory
file, or ansible will return an error. If you want to define a static group of dynamic child groups, define the dynamic
groups as empty in the static inventory file. For example:

[tag_Name_staging_foo]

[tag_Name_staging_bar]

[staging:children]
tag_Name_staging_foo
tag_Name_staging_bar

:

Inventory All about static inventory files

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Patterns

Topics

• Patterns

Patterns in Ansible are how we decide which hosts to manage. This can mean what hosts to communicate with, but in
terms of Playbooks it actually means what hosts to apply a particular configuration or IT process to.

We’ll go over how to use the command line in Introduction To Ad-Hoc Commands section, however, basically it looks
like this:

ansible <pattern_goes_here> -m <module_name> -a <arguments>

Such as:

24 Chapter 1. About Ansible

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

ansible webservers -m service -a "name=httpd state=restarted"

A pattern usually refers to a set of groups (which are sets of hosts) – in the above case, machines in the “webservers”
group.

Anyway, to use Ansible, you’ll first need to know how to tell Ansible which hosts in your inventory to talk to. This is
done by designating particular host names or groups of hosts.

The following patterns are equivalent and target all hosts in the inventory:

all

*

It is also possible to address a specific host or set of hosts by name:

one.example.com
one.example.com:two.example.com
192.0.2.50
192.0.2.*

The following patterns address one or more groups. Groups separated by a colon indicate an “OR” configuration. This
means the host may be in either one group or the other:

webservers
webservers:dbservers

You can exclude groups as well, for instance, all machines must be in the group webservers but not in the group
phoenix:

webservers:!phoenix

You can also specify the intersection of two groups. This would mean the hosts must be in the group webservers and
the host must also be in the group staging:

webservers:&staging

You can do combinations:

webservers:dbservers:&staging:!phoenix

The above configuration means “all machines in the groups ‘webservers’ and ‘dbservers’ are to be managed if they are
in the group ‘staging’ also, but the machines are not to be managed if they are in the group ‘phoenix’ ... whew!

You can also use variables if you want to pass some group specifiers via the “-e” argument to ansible-playbook, but
this is uncommonly used:

webservers:!{{excluded}}:&{{required}}

You also don’t have to manage by strictly defined groups. Individual host names, IPs and groups, can also be referenced
using wildcards

*.example.com

*.com

It’s also ok to mix wildcard patterns and groups at the same time:

one*.com:dbservers

1.1. Introduction 25

Ansible 2.2 Documentation, 2.4

You can select a host or subset of hosts from a group by their position. For example, given the following group:

[webservers]
cobweb
webbing
weber

You can refer to hosts within the group by adding a subscript to the group name:

webservers[0] # == cobweb
webservers[-1] # == weber
webservers[0:1] # == webservers[0],webservers[1]

== cobweb,webbing
webservers[1:] # == webbing,weber

Most people don’t specify patterns as regular expressions, but you can. Just start the pattern with a ‘~’:

~(web|db).*\.example\.com

While we’re jumping a bit ahead, additionally, you can add an exclusion criteria just by supplying the --limit flag
to /usr/bin/ansible or /usr/bin/ansible-playbook:

ansible-playbook site.yml --limit datacenter2

And if you want to read the list of hosts from a file, prefix the file name with ‘@’. Since Ansible 1.2:

ansible-playbook site.yml --limit @retry_hosts.txt

Easy enough. See Introduction To Ad-Hoc Commands and then Playbooks for how to apply this knowledge.

: With the exception of version 1.9, you can use ‘,’ instead of ‘:’ as a host list separator. The ‘,’ is preferred specially
when dealing with ranges and ipv6.

: As of 2.0 the ‘;’ is deprecated as a host list separator.

:

Introduction To Ad-Hoc Commands Examples of basic commands

Playbooks Learning ansible’s configuration management language

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Introduction To Ad-Hoc Commands

Topics

• Introduction To Ad-Hoc Commands

– Parallelism and Shell Commands

– File Transfer

26 Chapter 1. About Ansible

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

– Managing Packages

– Users and Groups

– Deploying From Source Control

– Managing Services

– Time Limited Background Operations

– Gathering Facts

The following examples show how to use /usr/bin/ansible for running ad hoc tasks.

What’s an ad-hoc command?

An ad-hoc command is something that you might type in to do something really quick, but don’t want to save for later.

This is a good place to start to understand the basics of what Ansible can do prior to learning the playbooks language
– ad-hoc commands can also be used to do quick things that you might not necessarily want to write a full playbook
for.

Generally speaking, the true power of Ansible lies in playbooks. Why would you use ad-hoc tasks versus playbooks?

For instance, if you wanted to power off all of your lab for Christmas vacation, you could execute a quick one-liner in
Ansible without writing a playbook.

For configuration management and deployments, though, you’ll want to pick up on using ‘/usr/bin/ansible-playbook’
– the concepts you will learn here will port over directly to the playbook language.

(See Playbooks for more information about those)

If you haven’t read Inventory already, please look that over a bit first and then we’ll get going.

Parallelism and Shell Commands

Arbitrary example.

Let’s use Ansible’s command line tool to reboot all web servers in Atlanta, 10 at a time. First, let’s set up SSH-agent
so it can remember our credentials:

$ ssh-agent bash
$ ssh-add ~/.ssh/id_rsa

If you don’t want to use ssh-agent and want to instead SSH with a password instead of keys, you can with
--ask-pass (-k), but it’s much better to just use ssh-agent.

Now to run the command on all servers in a group, in this case, atlanta, in 10 parallel forks:

$ ansible atlanta -a "/sbin/reboot" -f 10

/usr/bin/ansible will default to running from your user account. If you do not like this behavior, pass in “-u username”.
If you want to run commands as a different user, it looks like this:

$ ansible atlanta -a "/usr/bin/foo" -u username

Often you’ll not want to just do things from your user account. If you want to run commands through privilege
escalation:

$ ansible atlanta -a "/usr/bin/foo" -u username --become [--ask-become-pass]

1.1. Introduction 27

Ansible 2.2 Documentation, 2.4

Use --ask-become-pass (-K) if you are not using a passwordless privilege escalation method
(sudo/su/pfexec/doas/etc). This will interactively prompt you for the password to use. Use of a passwordless setup
makes things easier to automate, but it’s not required.

It is also possible to become a user other than root using --become-user:

$ ansible atlanta -a "/usr/bin/foo" -u username --become-user otheruser [--ask-become-
→˓pass]

: Rarely, some users have security rules where they constrain their sudo/pbrun/doas environment to running spe-
cific command paths only. This does not work with ansible’s no-bootstrapping philosophy and hundreds of different
modules. If doing this, use Ansible from a special account that does not have this constraint. One way of doing this
without sharing access to unauthorized users would be gating Ansible with Ansible Tower, which can hold on to an
SSH credential and let members of certain organizations use it on their behalf without having direct access.

Ok, so those are basics. If you didn’t read about patterns and groups yet, go back and read Patterns.

The -f 10 in the above specifies the usage of 10 simultaneous processes to use. You can also set this in Configuration
file to avoid setting it again. The default is actually 5, which is really small and conservative. You are probably going
to want to talk to a lot more simultaneous hosts so feel free to crank this up. If you have more hosts than the value set
for the fork count, Ansible will talk to them, but it will take a little longer. Feel free to push this value as high as your
system can handle!

You can also select what Ansible “module” you want to run. Normally commands also take a -m for module name,
but the default module name is ‘command’, so we didn’t need to specify that all of the time. We’ll use -m in later
examples to run some other About Modules.

: The command module does not support extended shell syntax like piping and redirects (although shell variables
will always work). If your command requires shell-specific syntax, use the shell module instead. Read more about the
differences on the About Modules page.

Using the shell module looks like this:

$ ansible raleigh -m shell -a 'echo $TERM'

When running any command with the Ansible ad hoc CLI (as opposed to Playbooks), pay particular attention to shell
quoting rules, so the local shell doesn’t eat a variable before it gets passed to Ansible. For example, using double
rather than single quotes in the above example would evaluate the variable on the box you were on.

So far we’ve been demoing simple command execution, but most Ansible modules are not simple imperative scripts.
Instead, they use a declarative model, calculating and executing the actions required to reach a specified final state.
Furthermore, they achieve a form of idempotence by checking the current state before they begin, and if the current
state matches the specified final state, doing nothing. However, we also recognize that running arbitrary commands
can be valuable, so Ansible easily supports both.

File Transfer

Here’s another use case for the /usr/bin/ansible command line. Ansible can SCP lots of files to multiple machines in
parallel.

To transfer a file directly to many servers:

$ ansible atlanta -m copy -a "src=/etc/hosts dest=/tmp/hosts"

28 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

If you use playbooks, you can also take advantage of the template module, which takes this another step further.
(See module and playbook documentation).

The file module allows changing ownership and permissions on files. These same options can be passed directly to
the copy module as well:

$ ansible webservers -m file -a "dest=/srv/foo/a.txt mode=600"
$ ansible webservers -m file -a "dest=/srv/foo/b.txt mode=600 owner=mdehaan
→˓group=mdehaan"

The file module can also create directories, similar to mkdir -p:

$ ansible webservers -m file -a "dest=/path/to/c mode=755 owner=mdehaan group=mdehaan
→˓state=directory"

As well as delete directories (recursively) and delete files:

$ ansible webservers -m file -a "dest=/path/to/c state=absent"

Managing Packages

There are modules available for yum and apt. Here are some examples with yum.

Ensure a package is installed, but don’t update it:

$ ansible webservers -m yum -a "name=acme state=present"

Ensure a package is installed to a specific version:

$ ansible webservers -m yum -a "name=acme-1.5 state=present"

Ensure a package is at the latest version:

$ ansible webservers -m yum -a "name=acme state=latest"

Ensure a package is not installed:

$ ansible webservers -m yum -a "name=acme state=absent"

Ansible has modules for managing packages under many platforms. If there isn’t a module for your package manager,
you can install packages using the command module or (better!) contribute a module for your package manager. Stop
by the mailing list for info/details.

Users and Groups

The ‘user’ module allows easy creation and manipulation of existing user accounts, as well as removal of user accounts
that may exist:

$ ansible all -m user -a "name=foo password=<crypted password here>"

$ ansible all -m user -a "name=foo state=absent"

See the About Modules section for details on all of the available options, including how to manipulate groups and
group membership.

1.1. Introduction 29

Ansible 2.2 Documentation, 2.4

Deploying From Source Control

Deploy your webapp straight from git:

$ ansible webservers -m git -a "repo=git://foo.example.org/repo.git dest=/srv/myapp
→˓version=HEAD"

Since Ansible modules can notify change handlers it is possible to tell Ansible to run specific tasks when the code is
updated, such as deploying Perl/Python/PHP/Ruby directly from git and then restarting apache.

Managing Services

Ensure a service is started on all webservers:

$ ansible webservers -m service -a "name=httpd state=started"

Alternatively, restart a service on all webservers:

$ ansible webservers -m service -a "name=httpd state=restarted"

Ensure a service is stopped:

$ ansible webservers -m service -a "name=httpd state=stopped"

Time Limited Background Operations

Long running operations can be run in the background, and it is possible to check their status later. For example, to
execute long_running_operation asynchronously in the background, with a timeout of 3600 seconds (-B),
and without polling (-P):

$ ansible all -B 3600 -P 0 -a "/usr/bin/long_running_operation --do-stuff"

If you do decide you want to check on the job status later, you can use the async_status module, passing it the job id
that was returned when you ran the original job in the background:

$ ansible web1.example.com -m async_status -a "jid=488359678239.2844"

Polling is built-in and looks like this:

$ ansible all -B 1800 -P 60 -a "/usr/bin/long_running_operation --do-stuff"

The above example says “run for 30 minutes max (-B 30*60=1800), poll for status (-P) every 60 seconds”.

Poll mode is smart so all jobs will be started before polling will begin on any machine. Be sure to use a high enough
--forks value if you want to get all of your jobs started very quickly. After the time limit (in seconds) runs out (-B),
the process on the remote nodes will be terminated.

Typically you’ll only be backgrounding long-running shell commands or software upgrades. Backgrounding the copy
module does not do a background file transfer. Playbooks also support polling, and have a simplified syntax for this.

Gathering Facts

Facts are described in the playbooks section and represent discovered variables about a system. These can be used to
implement conditional execution of tasks but also just to get ad-hoc information about your system. You can see all
facts via:

30 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

$ ansible all -m setup

It’s also possible to filter this output to just export certain facts, see the “setup” module documentation for details.

Read more about facts at Variables once you’re ready to read up on Playbooks.

:

Configuration file All about the Ansible config file

About Modules A list of available modules

Playbooks Using Ansible for configuration management & deployment

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Configuration file

Topics

• Configuration file

– Getting the latest configuration

– Environmental configuration

– Explanation of values by section

* General defaults

· action_plugins

· allow_unsafe_lookups

· allow_world_readable_tmpfiles

· ansible_managed

· ask_pass

· ask_sudo_pass

· ask_vault_pass

· bin_ansible_callbacks

· callback_plugins

· callback_whitelist

· command_warnings

· connection_plugins

· deprecation_warnings

· display_args_to_stdout

· display_skipped_hosts

· error_on_undefined_vars

· executable

1.1. Introduction 31

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

· filter_plugins

· force_color

· force_handlers

· forks

· fact_path

· gathering

· hash_behaviour

· hostfile

· host_key_checking

· internal_poll_interval

· inventory

· inventory_ignore_extensions

· jinja2_extensions

· library

· local_tmp

· log_path

· lookup_plugins

· merge_multiple_cli_tags

· module_lang

· module_name

· module_set_locale

· module_utils

· nocolor

· nocows

· pattern

· poll_interval

· private_key_file

· remote_port

· remote_tmp

· remote_user

· restrict_facts_namespace

· retry_files_enabled

· retry_files_save_path

· roles_path

· squash_actions

32 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

· stdout_callback

· strategy_plugins

· strategy

· sudo_exe

· sudo_flags

· sudo_user

· system_warnings

· timeout

· transport

· vars_plugins

· vault_password_file

* Privilege Escalation Settings

· become

· become_method

· become_user

· become_ask_pass

· become_allow_same_user

* Paramiko Specific Settings

· record_host_keys

· proxy_command

* OpenSSH Specific Settings

· ssh_args

· control_path

· control_path_dir

· retries

· scp_if_ssh

· pipelining

· ssh_executable

* Accelerated Mode Settings

· accelerate_port

· accelerate_timeout

· accelerate_connect_timeout

· accelerate_daemon_timeout

· accelerate_multi_key

* Selinux Specific Settings

1.1. Introduction 33

Ansible 2.2 Documentation, 2.4

· special_context_filesystems

· libvirt_lxc_noseclabel

· show_custom_stats

* Galaxy Settings

· server

· ignore_certs

Certain settings in Ansible are adjustable via a configuration file. The stock configuration should be sufficient for most
users, but there may be reasons you would want to change them.

Changes can be made and used in a configuration file which will be processed in the following order:

* ANSIBLE_CONFIG (an environment variable)

* ansible.cfg (in the current directory)

* .ansible.cfg (in the home directory)

* /etc/ansible/ansible.cfg

Prior to 1.5 the order was:

* ansible.cfg (in the current directory)

* ANSIBLE_CONFIG (an environment variable)

* .ansible.cfg (in the home directory)

* /etc/ansible/ansible.cfg

Ansible will process the above list and use the first file found. Settings in files are not merged.

: Comments The configuration file is one variant of an INI format. Both the hash sign (“#”) and semicolon (”;”) are
allowed as comment markers when the comment starts the line. However, if the comment is inline with regular values,
only the semicolon is allowed to introduce the comment. For instance:

some basic default values...
inventory = /etc/ansible/hosts ; This points to the file that lists your hosts

Getting the latest configuration

If installing ansible from a package manager, the latest ansible.cfg should be present in /etc/ansible, possibly as a
”.rpmnew” file (or other) as appropriate in the case of updates.

If you have installed from pip or from source, however, you may want to create this file in order to override default
settings in Ansible.

You may wish to consult the ansible.cfg in source control for all of the possible latest values.

Environmental configuration

Ansible also allows configuration of settings via environment variables. If these environment variables are set, they
will override any setting loaded from the configuration file. These variables are defined in constants.py.

34 Chapter 1. About Ansible

https://raw.github.com/ansible/ansible/devel/examples/ansible.cfg
https://github.com/ansible/ansible/blob/devel/lib/ansible/constants.py

Ansible 2.2 Documentation, 2.4

Explanation of values by section

The configuration file is broken up into sections. Most options are in the “general” section but some sections of the
file are specific to certain connection types.

General defaults

In the [defaults] section of ansible.cfg, the following settings are tunable:

action_plugins

Actions are pieces of code in ansible that enable things like module execution, templating, and so forth.

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different loca-
tions:

action_plugins = ~/.ansible/plugins/action_plugins/:/usr/share/ansible_plugins/action_
→˓plugins

Most users will not need to use this feature. See Developing Plugins for more details.

allow_unsafe_lookups

2.2.3, : 2.3.1

When enabled, this option allows lookup plugins (whether used in variables as {{lookup(‘foo’)}} or as a loop as
with_foo) to return data that is not marked “unsafe”. By default, such data is marked as unsafe to prevent the templating
engine from evaluating any jinja2 templating language, as this could represent a security risk.

This option is provided to allow for backwards-compatibility, however users should first consider adding al-
low_unsafe=True to any lookups which may be expected to contain data which may be run through the templating
engine later. For example:

{{lookup('pipe', '/path/to/some/command', allow_unsafe=True)}}

allow_world_readable_tmpfiles

2.1 .

This makes the temporary files created on the machine to be world readable and will issue a warning instead of failing
the task.

It is useful when becoming an unprivileged user:

allow_world_readable_tmpfiles=True

ansible_managed

The ansible_managed string can be inserted into files written by Ansible’s config templating system:

1.1. Introduction 35

Ansible 2.2 Documentation, 2.4

{{ ansible_managed }}

The default value indicates that Ansible is managing a file:

ansible_managed = Ansible managed

This string can be helpful to indicate that a file should not be directly edited because Ansible may overwrite the
contents of the file.

There are several special placeholder values that can be placed in the ansible_managed string. These are not in
the default ansible_managed string because they can cause Ansible to behave as though the entire template has
changed when only the ansible_managed string has changed.

These placeholder values, along with the situations which can lead Ansible to report a template as changed when they
are used, are listed below:

• Standard directives that can be used with :func:~time.strftime:. The time referred to is the modification time of
the template file. Many revision control systems timestamp files according to when they are checked out, not
the last time the file was modified. That means Ansible will think the file has been modified anytime there is a
fresh checkout.

• {file}: expands to the name of the full path to the template file. If Ansible is run with multiple checkouts of
the same configuration repository (for instance, in each sysadmin’s home directory), then the path will differ in
each checkout causing Ansible to behave as though the file has been modified.

• {host}: expands to the hostname of the machine ansible is run on. If ansible is invoked on multiple
machines (for instance, each sysadmin can checkout the configuration repository on their workstation and run
ansible there), then the host will vary on each of these machines. This will cause Ansible to behave as though
the file has been modified.

• {uid}: expands to the owner of the template file. If Ansible is run on checkouts of the configuration repository
made by separate users (for instance, if multiple system administrators are making checkouts of the repository
with their own accounts) then this will cause Ansible to behave as if the file has been modified.

ask_pass

This controls whether an Ansible playbook should prompt for a password by default. The default behavior is no:

ask_pass = True

If using SSH keys for authentication, it’s probably not needed to change this setting.

ask_sudo_pass

Similar to ask_pass, this controls whether an Ansible playbook should prompt for a sudo password by default when
sudoing. The default behavior is also no:

ask_sudo_pass = True

Users on platforms where sudo passwords are enabled should consider changing this setting.

ask_vault_pass

This controls whether an Ansible playbook should prompt for the vault password by default. The default behavior is
no:

36 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

ask_vault_pass = True

bin_ansible_callbacks

1.8 .

Controls whether callback plugins are loaded when running /usr/bin/ansible. This may be used to log activity from
the command line, send notifications, and so on. Callback plugins are always loaded for /usr/bin/ansible-playbook if
present and cannot be disabled:

bin_ansible_callbacks = False

Prior to 1.8, callbacks were never loaded for /usr/bin/ansible.

callback_plugins

Callbacks are pieces of code in ansible that get called on specific events, permitting to trigger notifications.

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different loca-
tions:

callback_plugins = ~/.ansible/plugins/callback:/usr/share/ansible/plugins/callback

Most users will not need to use this feature. See Developing Plugins for more details

callback_whitelist

2.0 .

Now ansible ships with all included callback plugins ready to use but they are disabled by default. This setting lets you
enable a list of additional callbacks. This cannot change or override the default stdout callback, use stdout_callback
for that:

callback_whitelist = timer,mail

command_warnings

1.8 .

By default since Ansible 1.8, Ansible will issue a warning when the shell or command module is used and the command
appears to be similar to an existing Ansible module. For example, this can include reminders to use the ‘git’ module
instead of shell commands to execute ‘git’. Using modules when possible over arbitrary shell commands can lead to
more reliable and consistent playbook runs, and also easier to maintain playbooks:

command_warnings = False

These warnings can be silenced by adjusting the following setting or adding warn=yes or warn=no to the end of the
command line parameter string, like so:

- name: usage of git that could be replaced with the git module
shell: git update foo warn=yes

1.1. Introduction 37

Ansible 2.2 Documentation, 2.4

connection_plugins

Connections plugin permit to extend the channel used by ansible to transport commands and files.

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different loca-
tions:

connection_plugins = ~/.ansible/plugins/connection_plugins/:/usr/share/ansible_
→˓plugins/connection_plugins

Most users will not need to use this feature. See Developing Plugins for more details

deprecation_warnings

1.3 .

Allows disabling of deprecating warnings in ansible-playbook output:

deprecation_warnings = True

Deprecation warnings indicate usage of legacy features that are slated for removal in a future release of Ansible.

display_args_to_stdout

2.1.0 .

By default, ansible-playbook will print a header for each task that is run to stdout. These headers will contain the
name: field from the task if you specified one. If you didn’t then ansible-playbook uses the task’s action to help you
tell which task is presently running. Sometimes you run many of the same action and so you want more information
about the task to differentiate it from others of the same action. If you set this variable to True in the config then
ansible-playbook will also include the task’s arguments in the header.

This setting defaults to False because there is a chance that you have sensitive values in your parameters and do not
want those to be printed to stdout:

display_args_to_stdout = False

If you set this to True you should be sure that you have secured your environment’s stdout (no one can shoulder
surf your screen and you aren’t saving stdout to an insecure file) or made sure that all of your playbooks explicitly
added the no_log: True parameter to tasks which have sensistive values See How do I keep secret data in my
playbook? for more information.

display_skipped_hosts

If set to False, ansible will not display any status for a task that is skipped. The default behavior is to display skipped
tasks:

display_skipped_hosts = True

Note that Ansible will always show the task header for any task, regardless of whether or not the task is skipped.

38 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

error_on_undefined_vars

On by default since Ansible 1.3, this causes ansible to fail steps that reference variable names that are likely typoed:

error_on_undefined_vars = True

If set to False, any ‘{{ template_expression }}’ that contains undefined variables will be rendered in a template or
ansible action line exactly as written.

executable

This indicates the command to use to spawn a shell under a sudo environment. Users may need to change this to
/bin/bash in rare instances when sudo is constrained, but in most cases it may be left as is:

executable = /bin/bash

Starting in version 2.1 this can be overridden by the inventory var ansible_shell_executable.

filter_plugins

Filters are specific functions that can be used to extend the template system.

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different loca-
tions:

filter_plugins = ~/.ansible/plugins/filter_plugins/:/usr/share/ansible_plugins/filter_
→˓plugins

Most users will not need to use this feature. See Developing Plugins for more details

force_color

This options forces color mode even when running without a TTY:

force_color = 1

force_handlers

1.9.1 .

This option causes notified handlers to run on a host even if a failure occurs on that host:

force_handlers = True

The default is False, meaning that handlers will not run if a failure has occurred on a host. This can also be set per
play or on the command line. See Handlers and Failure for more details.

1.1. Introduction 39

Ansible 2.2 Documentation, 2.4

forks

This is the default number of parallel processes to spawn when communicating with remote hosts. Since Ansible 1.3,
the fork number is automatically limited to the number of possible hosts at runtime, so this is really a limit of how
much network and CPU load you think you can handle. Many users may set this to 50, some set it to 500 or more.
If you have a large number of hosts, higher values will make actions across all of those hosts complete faster. The
default is very very conservative:

forks = 5

fact_path

This option allows you to globally configure a custom path for _local_facts:: for the implied setup task when using
implied fact gathering.

fact_path = /home/centos/ansible_facts.d

The default is to use the default from the setup module: /etc/ansible/facts.d This ONLY affects fact gather-
ing triggered by a play when gather_facts: True.

gathering

New in 1.6, the ‘gathering’ setting controls the default policy of facts gathering (variables discovered about remote
systems).

The value ‘implicit’ is the default, which means that the fact cache will be ignored and facts will be gathered per
play unless ‘gather_facts: False’ is set. The value ‘explicit’ is the inverse, facts will not be gathered unless directly
requested in the play. The value ‘smart’ means each new host that has no facts discovered will be scanned, but if the
same host is addressed in multiple plays it will not be contacted again in the playbook run. This option can be useful
for those wishing to save fact gathering time. Both ‘smart’ and ‘explicit’ will use the fact cache:

gathering = smart

2.1 .

You can specify a subset of gathered facts, via the play’s gather_facts directive, using the following option:

gather_subset = all

all gather all subsets (the default)

network gather network facts

hardware gather hardware facts (longest facts to retrieve)

virtual gather facts about virtual machines hosted on the machine

ohai gather facts from ohai

facter gather facts from facter

You can combine them using a comma separated list (ex: network,virtual,facter)

You can also disable specific subsets by prepending with a ! like this:

Don't gather hardware facts, facts from chef's ohai or puppet's facter
gather_subset = !hardware,!ohai,!facter

40 Chapter 1. About Ansible

https://docs.ansible.com/ansible/setup_module.html

Ansible 2.2 Documentation, 2.4

A set of basic facts are always collected no matter which additional subsets are selected. If you want to collect the
minimal amount of facts, use !all:

gather_subset = !all

hash_behaviour

Ansible by default will override variables in specific precedence orders, as described in Variables. When a variable of
higher precedence wins, it will replace the other value.

Some users prefer that variables that are hashes (aka ‘dictionaries’ in Python terms) are merged. This setting is called
‘merge’. This is not the default behavior and it does not affect variables whose values are scalars (integers, strings)
or arrays. We generally recommend not using this setting unless you think you have an absolute need for it, and
playbooks in the official examples repos do not use this setting:

hash_behaviour = replace

The valid values are either ‘replace’ (the default) or ‘merge’.

2.0 .

If you want to merge hashes without changing the global settings, use the combine filter described in Filters.

hostfile

This is a deprecated setting since 1.9, please look at inventory for the new setting.

host_key_checking

As described in Getting Started, host key checking is on by default in Ansible 1.3 and later. If you understand the
implications and wish to disable it, you may do so here by setting the value to False:

host_key_checking = True

internal_poll_interval

2.2 .

This sets the interval (in seconds) of Ansible internal processes polling each other. Lower values improve performance
with large playbooks at the expense of extra CPU load. Higher values are more suitable for Ansible usage in automa-
tion scenarios, when UI responsiveness is not required but CPU usage might be a concern. Default corresponds to the
value hardcoded in Ansible 2.1:

internal_poll_interval=0.001

inventory

This is the default location of the inventory file, script, or directory that Ansible will use to determine what hosts it has
available to talk to:

1.1. Introduction 41

Ansible 2.2 Documentation, 2.4

inventory = /etc/ansible/hosts

It used to be called hostfile in Ansible before 1.9

inventory_ignore_extensions

Comma-separated list of file extension patterns to ignore when Ansible inventory is a directory with multiple sources
(static and dynamic):

inventory_ignore_extensions = ~, .orig, .bak, .ini, .cfg, .retry, .pyc, .pyo

This option can be overridden by setting ANSIBLE_INVENTORY_IGNORE environment variable.

jinja2_extensions

This is a developer-specific feature that allows enabling additional Jinja2 extensions:

jinja2_extensions = jinja2.ext.do,jinja2.ext.i18n

If you do not know what these do, you probably don’t need to change this setting :)

library

This is the default location Ansible looks to find modules:

library = /usr/share/ansible

Ansible can look in multiple locations if you feed it a colon separated path, and it also will look for modules in the
./library directory alongside a playbook.

This can be used to manage modules pulled from several different locations. For instance, a site wishing to checkout
modules from several different git repositories might handle it like this:

$ mkdir -p /srv/modules
$ cd /srv/modules
$ git checkout https://vendor_modules .
$ git checkout ssh://custom_modules .
$ export ANSIBLE_LIBRARY=/srv/modules/custom_modules:/srv/modules/vendor_modules
$ ansible [...]

In case of modules with the same name, the library paths are searched in order and the first module found with that
name is used.

local_tmp

2.1 .

When Ansible gets ready to send a module to a remote machine it usually has to add a few things to the module: Some
boilerplate code, the module’s parameters, and a few constants from the config file. This combination of things gets
stored in a temporary file until ansible exits and cleans up after itself. The default location is a subdirectory of the
user’s home directory. If you’d like to change that, you can do so by altering this setting:

42 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

local_tmp = ~/.ansible/tmp

Ansible will then choose a random directory name inside this location.

log_path

If present and configured in ansible.cfg, Ansible will log information about executions at the designated location. Be
sure the user running Ansible has permissions on the logfile:

log_path=/var/log/ansible.log

This behavior is not on by default. Note that ansible will, without this setting, record module arguments called to the
syslog of managed machines. Password arguments are excluded.

For Enterprise users seeking more detailed logging history, you may be interested in Ansible Tower.

lookup_plugins

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different loca-
tions:

lookup_plugins = ~/.ansible/plugins/lookup_plugins/:/usr/share/ansible_plugins/lookup_
→˓plugins

Most users will not need to use this feature. See Developing Plugins for more details

merge_multiple_cli_tags

2.3 .

This allows changing how multiple --tags and --skip-tags arguments are handled on the command line. Spec-
ifying --tags more than once merges all of the --tags options together. If you want the pre-2.4.x behaviour where
only the last value of --tags is used, then set this to False. The same holds true for --skip-tags.

: The default value for this in 2.3 is False. In 2.4, the default value is True. After 2.8, the option will be removed.
Multiple --tags and multiple --skip-tags will always be merged together.

module_lang

This is to set the default language to communicate between the module and the system. By default, the value is value
LANG on the controller or, if unset, en_US.UTF-8 (it used to be C in previous versions):

module_lang = en_US.UTF-8

: This is only used if module_set_locale is set to True.

1.1. Introduction 43

Ansible 2.2 Documentation, 2.4

module_name

This is the default module name (-m) value for /usr/bin/ansible. The default is the ‘command’ module. Remember the
command module doesn’t support shell variables, pipes, or quotes, so you might wish to change it to ‘shell’:

module_name = command

module_set_locale

This boolean value controls whether or not Ansible will prepend locale-specific environment variables (as specified
via the module_lang configuration option). If enabled, it results in the LANG, LC_MESSAGES, and LC_ALL being
set when the module is executed on the given remote system. By default this is disabled.

: The module_set_locale option was added in Ansible-2.1 and defaulted to True. The default was changed to False in
Ansible-2.2

module_utils

This is the default location Ansible looks to find module_utils:

module_utils = /usr/share/ansible/my_module_utils

module_utils are python modules that Ansible is able to combine with Ansible modules when sending them to the
remote machine. Having custom module_utils is useful for extracting common code when developing a set of site-
specific modules.

Ansible can look in multiple locations if you feed it a colon separated path, and it also will look for modules in the
./module_utils directory alongside a playbook.

nocolor

By default ansible will try to colorize output to give a better indication of failure and status information. If you dislike
this behavior you can turn it off by setting ‘nocolor’ to 1:

nocolor = 0

nocows

By default ansible will take advantage of cowsay if installed to make /usr/bin/ansible-playbook runs more exciting.
Why? We believe systems management should be a happy experience. If you do not like the cows, you can disable
them by setting ‘nocows’ to 1:

nocows = 0

pattern

This is the default group of hosts to talk to in a playbook if no “hosts:” stanza is supplied. The default is to talk to all
hosts. You may wish to change this to protect yourself from surprises:

44 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

hosts = *

Note that /usr/bin/ansible always requires a host pattern and does not use this setting, only /usr/bin/ansible-playbook.

poll_interval

For asynchronous tasks in Ansible (covered in Asynchronous Actions and Polling), this is how often to check back
on the status of those tasks when an explicit poll interval is not supplied. The default is a reasonably moderate 15
seconds which is a tradeoff between checking in frequently and providing a quick turnaround when something may
have completed:

poll_interval = 15

private_key_file

If you are using a pem file to authenticate with machines rather than SSH agent or passwords, you can set the default
value here to avoid re-specifying --private-key with every invocation:

private_key_file=/path/to/file.pem

remote_port

This sets the default SSH port on all of your systems, for systems that didn’t specify an alternative value in inventory.
The default is the standard 22:

remote_port = 22

remote_tmp

Ansible works by transferring modules to your remote machines, running them, and then cleaning up after itself. In
some cases, you may not wish to use the default location and would like to change the path. You can do so by altering
this setting:

remote_tmp = ~/.ansible/tmp

The default is to use a subdirectory of the user’s home directory. Ansible will then choose a random directory name
inside this location.

remote_user

This is the default username ansible will connect as for /usr/bin/ansible-playbook. Note that /usr/bin/ansible will
always default to the current user if this is not defined:

remote_user = root

1.1. Introduction 45

Ansible 2.2 Documentation, 2.4

restrict_facts_namespace

2.4 .

This allows restricting facts in their own namespace (under ansible_facts) instead of pushing them into the main. False
by default. Can also be set via the environment variable ANSIBLE_RESTRICT_FACTS. Using ansible_system as an
example:

When False:

- debug: var=ansible_system

When True:

- debug: var=ansible_facts.ansible_system

retry_files_enabled

This controls whether a failed Ansible playbook should create a .retry file. The default setting is True:

retry_files_enabled = False

retry_files_save_path

The retry files save path is where Ansible will save .retry files when a playbook fails and retry_files_enabled is True
(the default). The default location is adjacent to the play (~/ in versions older than 2.0) and can be changed to any
writeable path:

retry_files_save_path = ~/.ansible/retry-files

The directory will be created if it does not already exist.

roles_path

1.4 .

The roles path indicate additional directories beyond the ‘roles/’ subdirectory of a playbook project to search to find
Ansible roles. For instance, if there was a source control repository of common roles and a different repository of
playbooks, you might choose to establish a convention to checkout roles in /opt/mysite/roles like so:

roles_path = /opt/mysite/roles

Additional paths can be provided separated by colon characters, in the same way as other pathstrings:

roles_path = /opt/mysite/roles:/opt/othersite/roles

Roles will be first searched for in the playbook directory. Should a role not be found, it will indicate all the possible
paths that were searched.

46 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

squash_actions

2.0 .

Ansible can optimise actions that call modules that support list parameters when using with_ looping. Instead of
calling the module once for each item, the module is called once with the full list.

The default value for this setting is only for certain package managers, but it can be used for any module:

squash_actions = apk,apt,dnf,homebrew,package,pacman,pkgng,yum,zypper

Currently, this is only supported for modules that have a name parameter, and only when the item is the only thing
being passed to the parameter.

stdout_callback

2.0 .

This setting allows you to override the default stdout callback for ansible-playbook:

stdout_callback = skippy

strategy_plugins

Strategy plugin allow users to change the way in which Ansible runs tasks on targeted hosts.

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different loca-
tions:

strategy_plugins = ~/.ansible/plugins/strategy_plugins/:/usr/share/ansible_plugins/
→˓strategy_plugins

Most users will not need to use this feature. See Developing Plugins for more details

strategy

Strategy allow to change the default strategy used by Ansible:

strategy = free

sudo_exe

If using an alternative sudo implementation on remote machines, the path to sudo can be replaced here provided the
sudo implementation is matching CLI flags with the standard sudo:

sudo_exe = sudo

1.1. Introduction 47

Ansible 2.2 Documentation, 2.4

sudo_flags

Additional flags to pass to sudo when engaging sudo support. The default is ‘-H -S -n’ which sets the HOME envi-
ronment variable, prompts for passwords via STDIN, and avoids prompting the user for input of any kind. Note that
‘-n’ will conflict with using password-less sudo auth, such as pam_ssh_agent_auth. In some situations you may wish
to add or remove flags, but in general most users will not need to change this setting::

sudo_flags=-H -S -n

sudo_user

This is the default user to sudo to if --sudo-user is not specified or ‘sudo_user’ is not specified in an Ansible
playbook. The default is the most logical: ‘root’:

sudo_user = root

system_warnings

1.6 .

Allows disabling of warnings related to potential issues on the system running ansible itself (not on the managed
hosts):

system_warnings = True

These may include warnings about 3rd party packages or other conditions that should be resolved if possible.

timeout

This is the default SSH timeout to use on connection attempts:

timeout = 10

transport

This is the default transport to use if “-c <transport_name>” is not specified to /usr/bin/ansible or /usr/bin/ansible-
playbook. The default is ‘smart’, which will use ‘ssh’ (OpenSSH based) if the local operating system is new enough
to support ControlPersist technology, and then will otherwise use ‘paramiko’. Other transport options include ‘local’,
‘chroot’, ‘jail’, and so on.

Users should usually leave this setting as ‘smart’ and let their playbooks choose an alternate setting when needed with
the ‘connection:’ play parameter:

transport = paramiko

vars_plugins

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different loca-
tions:

48 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

vars_plugins = ~/.ansible/plugins/vars_plugins/:/usr/share/ansible_plugins/vars_
→˓plugins

Most users will not need to use this feature. See Developing Plugins for more details

vault_password_file

1.7 .

Configures the path to the Vault password file as an alternative to specifying --vault-password-file on the
command line:

vault_password_file = /path/to/vault_password_file

As of 1.7 this file can also be a script. If you are using a script instead of a flat file, ensure that it is marked as
executable, and that the password is printed to standard output. If your script needs to prompt for data, prompts can
be sent to standard error.

Privilege Escalation Settings

Ansible can use existing privilege escalation systems to allow a user to execute tasks as another. As of 1.9 ‘become’
supersedes the old sudo/su, while still being backwards compatible. Settings live under the [privilege_escalation]
header.

become

The equivalent of adding sudo: or su: to a play or task, set to true/yes to activate privilege escalation. The default
behavior is no:

become = True

become_method

Set the privilege escalation method. The default is sudo, other options are su, pbrun, pfexec, doas, ksu:

become_method = su

become_user

The equivalent to ansible_sudo_user or ansible_su_user, allows to set the user you become through privilege escala-
tion. The default is ‘root’:

become_user = root

become_ask_pass

Ask for privilege escalation password, the default is False:

1.1. Introduction 49

Ansible 2.2 Documentation, 2.4

become_ask_pass = True

become_allow_same_user

Most of the time, using sudo to run a command as the same user who is running sudo itself is unnecessary over-
head, so Ansible does not allow it. However, depending on the sudo configuration, it may be necessary to run
a command as the same user through sudo, such as to switch SELinux contexts. For this reason, you can set
become_allow_same_user to True and disable this optimization.

Paramiko Specific Settings

Paramiko is the default SSH connection implementation on Enterprise Linux 6 or earlier, and is not used by default on
other platforms. Settings live under the [paramiko_connection] header.

record_host_keys

The default setting of yes will record newly discovered and approved (if host key checking is enabled) hosts in the
user’s hostfile. This setting may be inefficient for large numbers of hosts, and in those situations, using the ssh transport
is definitely recommended instead. Setting it to False will improve performance and is recommended when host key
checking is disabled:

record_host_keys = True

proxy_command

2.1 .

Use an OpenSSH like ProxyCommand for proxying all Paramiko SSH connections through a bastion or jump host.
Requires a minimum of Paramiko version 1.9.0. On Enterprise Linux 6 this is provided by python-paramiko1.
10 in the EPEL repository:

proxy_command = ssh -W "%h:%p" bastion

OpenSSH Specific Settings

Under the [ssh_connection] header, the following settings are tunable for SSH connections. OpenSSH is the default
connection type for Ansible on OSes that are new enough to support ControlPersist. (This means basically all operating
systems except Enterprise Linux 6 or earlier).

ssh_args

If set, this will pass a specific set of options to Ansible rather than Ansible’s usual defaults:

ssh_args = -o ControlMaster=auto -o ControlPersist=60s

In particular, users may wish to raise the ControlPersist time to encourage performance. A value of 30 minutes may
be appropriate. If -o ControlPath is set in ssh_args, the control_path setting is not used.

50 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

control_path

This is the location to save ControlPath sockets. This defaults to:

control_path=%(directory)s/ansible-ssh-%%h-%%p-%%r

On some systems with very long hostnames or very long path names (caused by long user names or deeply nested
home directories) this can exceed the character limit on file socket names (108 characters for most platforms). In that
case, you may wish to shorten the string to something like the below:

control_path = %(directory)s/%%h-%%r

Ansible 1.4 and later will instruct users to run with “-vvvv” in situations where it hits this problem and if so it is easy
to tell there is too long of a Control Path filename. This may be frequently encountered on EC2. This setting is ignored
if -o ControlPath is set in ssh_args.

control_path_dir

2.3 .

This is the base directory of the ControlPath sockets. It is the %(directory)s part of the control_path option.
This defaults to:

control_path_dir=~/.ansible/cp

retries

Adds the option to retry failed ssh executions if the failure is encountered in ssh itself, not the remote command. This
can be helpful if there are transient network issues. Enabled by setting retries to an integer greater than 1. Defaults to:

retries = 0

scp_if_ssh

Occasionally users may be managing a remote system that doesn’t have SFTP enabled. If set to True, we can cause
scp to be used to transfer remote files instead:

scp_if_ssh = False

There’s really no reason to change this unless problems are encountered, and then there’s also no real drawback to
managing the switch. Most environments support SFTP by default and this doesn’t usually need to be changed.

pipelining

Enabling pipelining reduces the number of SSH operations required to execute a module on the remote server, by
executing many ansible modules without actual file transfer. This can result in a very significant performance im-
provement when enabled, however when using “sudo:” operations you must first disable ‘requiretty’ in /etc/sudoers
on all managed hosts.

By default, this option is disabled to preserve compatibility with sudoers configurations that have requiretty (the default
on many distros), but is highly recommended if you can enable it, eliminating the need for Accelerated Mode:

1.1. Introduction 51

Ansible 2.2 Documentation, 2.4

pipelining = False

ssh_executable

2.2 .

This is the location of the ssh binary. It defaults to ssh which will use the first ssh binary available in $PATH. This
config can also be overridden with ansible_ssh_executable inventory variable:

ssh_executable="/usr/local/bin/ssh"

This option is usually not required, it might be useful when access to system ssh is restricted, or when using ssh
wrappers to connect to remote hosts.

Accelerated Mode Settings

Under the [accelerate] header, the following settings are tunable for Accelerated Mode. Acceleration is a useful
performance feature to use if you cannot enable pipelining in your environment, but is probably not needed if you can.

accelerate_port

1.3 .

This is the port to use for accelerated mode:

accelerate_port = 5099

accelerate_timeout

1.4 .

This setting controls the timeout for receiving data from a client. If no data is received during this time, the socket
connection will be closed. A keepalive packet is sent back to the controller every 15 seconds, so this timeout should
not be set lower than 15 (by default, the timeout is 30 seconds):

accelerate_timeout = 30

accelerate_connect_timeout

1.4 .

This setting controls the timeout for the socket connect call, and should be kept relatively low. The connection to the
accelerate_port will be attempted 3 times before Ansible will fall back to ssh or paramiko (depending on your default
connection setting) to try and start the accelerate daemon remotely. The default setting is 1.0 seconds:

accelerate_connect_timeout = 1.0

Note, this value can be set to less than one second, however it is probably not a good idea to do so unless you’re on
a very fast and reliable LAN. If you’re connecting to systems over the internet, it may be necessary to increase this
timeout.

52 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

accelerate_daemon_timeout

1.6 .

This setting controls the timeout for the accelerated daemon, as measured in minutes. The default daemon timeout is
30 minutes:

accelerate_daemon_timeout = 30

Note, prior to 1.6, the timeout was hard-coded from the time of the daemon’s launch. For version 1.6+, the timeout is
now based on the last activity to the daemon and is configurable via this option.

accelerate_multi_key

1.6 .

If enabled, this setting allows multiple private keys to be uploaded to the daemon. Any clients connecting to the
daemon must also enable this option:

accelerate_multi_key = yes

New clients first connect to the target node over SSH to upload the key, which is done via a local socket file, so they
must have the same access as the user that launched the daemon originally.

Selinux Specific Settings

These are settings that control SELinux interactions.

special_context_filesystems

1.9 .

This is a list of file systems that require special treatment when dealing with security context. The normal behaviour
is for operations to copy the existing context or use the user default, this changes it to use a file system dependent
context. The default list is: nfs,vboxsf,fuse,ramfs:

special_context_filesystems = nfs,vboxsf,fuse,ramfs,myspecialfs

libvirt_lxc_noseclabel

2.1 .

This setting causes libvirt to connect to lxc containers by passing –noseclabel to virsh. This is necessary when running
on systems which do not have SELinux. The default behavior is no:

libvirt_lxc_noseclabel = True

show_custom_stats

2.3 .

If enabled, this setting will display custom stats (set via set_stats plugin) when using the default callback.

1.1. Introduction 53

Ansible 2.2 Documentation, 2.4

Galaxy Settings

The following options can be set in the [galaxy] section of ansible.cfg:

server

Override the default Galaxy server value of https://galaxy.ansible.com. Useful if you have a hosted version of the
Galaxy web app or want to point to the testing site https://galaxy-qa.ansible.com. It does not work against private,
hosted repos, which Galaxy can use for fetching and installing roles.

ignore_certs

If set to yes, ansible-galaxy will not validate TLS certificates. This can be useful for testing against a server with a
self-signed certificate.

BSD Support

Topics

• BSD Support

– Working with BSD

– Bootstrapping BSD

– Setting the Python interpreter

– Which modules are available?

– Using BSD as the control machine

– BSD Facts

– BSD Efforts and Contributions

Working with BSD

Ansible manages Linux/Unix machines using SSH by default. BSD machines are no exception, however this document
covers some of the differences you may encounter with Ansible when working with BSD variants.

Typically, Ansible will try to default to using OpenSSH as a connection method. This is suitable when using SSH
keys to authenticate, but when using SSH passwords, Ansible relies on sshpass. Most versions of sshpass do not
deal particularly well with BSD login prompts, so when using SSH passwords against BSD machines, it is recom-
mended to change the transport method to paramiko. You can do this in ansible.cfg globally or you can set it as an
inventory/group/host variable. For example:

[freebsd]
mybsdhost1 ansible_connection=paramiko

Ansible is agentless by default, however certain software is required on the target machines. Using Python 2.4 on the
agents requires an additional py-simplejson package/library to be installed, however this library is already included
in Python 2.5 and above. Operating without Python is possible with the raw module. Although this module can be

54 Chapter 1. About Ansible

https://galaxy.ansible.com
https://galaxy-qa.ansible.com

Ansible 2.2 Documentation, 2.4

used to bootstrap Ansible and install Python on BSD variants (see below), it is very limited and the use of Python is
required to make full use of Ansible’s features.

Bootstrapping BSD

As mentioned above, you can bootstrap Ansible with the raw module and remotely install Python on targets. The
following example installs Python 2.7 which includes the json library required for full functionality of Ansible. On
your control machine you can simply execute the following for most versions of FreeBSD:

ansible -m raw -a “pkg install -y python27” mybsdhost1

Once this is done you can now use other Ansible modules apart from the raw module.

: This example used pkg as used on FreeBSD, however you should be able to substitute the appropriate package tool
for your BSD; the package name may also differ. Refer to the package list or documentation of the BSD variant you
are using for the exact Python package name you intend to install.

Setting the Python interpreter

To support a variety of Unix/Linux operating systems and distributions, Ansible cannot always rely on the existing
environment or env variables to locate the correct Python binary. By default, modules point at /usr/bin/python
as this is the most common location. On BSD variants, this path may differ, so it is advised to inform Ansible of the
binary’s location, through the ansible_python_interpreter inventory variable. For example:

[freebsd:vars]
ansible_python_interpreter=/usr/local/bin/python2.7

If you use additional plugins beyond those bundled with Ansible, you can set similar variables for bash, perl or
ruby, depending on how the plugin is written. For example:

[freebsd:vars]
ansible_python_interpreter=/usr/local/bin/python
ansible_perl_interpreter=/usr/bin/perl5

Which modules are available?

The majority of the core Ansible modules are written for a combination of Linux/Unix machines and other generic
services, so most should function well on the BSDs with the obvious exception of those that are aimed at Linux-only
technologies (such as LVG).

Using BSD as the control machine

Using BSD as the control machine is as simple as installing the Ansible package for your BSD variant or by following
the pip or ‘from source’ instructions.

BSD Facts

Ansible gathers facts from the BSDs in a similar manner to Linux machines, but since the data, names and structures
can vary for network, disks and other devices, one should expect the output to be slightly different yet still familiar to
a BSD administrator.

1.1. Introduction 55

Ansible 2.2 Documentation, 2.4

BSD Efforts and Contributions

BSD support is important to us at Ansible. Even though the majority of our contributors use and target Linux we
have an active BSD community and strive to be as BSD friendly as possible. Please feel free to report any issues or
incompatibilities you discover with BSD; pull requests with an included fix are also welcome!

:

Introduction To Ad-Hoc Commands Examples of basic commands

Playbooks Learning ansible’s configuration management language

Developing Modules How to write modules

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Windows Support

Topics

• Windows Support

– Windows: How Does It Work

– Installing on the Control Machine

– Using a Windows control machine

– Authentication Options

* Certificate

* Kerberos

· Installing python-kerberos dependencies

· Installing python-kerberos

· Configuring Kerberos

· Testing a kerberos connection

· Automatic kerberos ticket management

· Troubleshooting kerberos connections

* CredSSP

· Installing requests-credssp

· CredSSP and TLS 1.2

* Credential Delegation

– Inventory

– Windows System Prep

– Getting to PowerShell 3.0 or higher

– What modules are available

– Developers: Supported modules and how it works

56 Chapter 1. About Ansible

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

– Windows Facts

– Windows Playbook Examples

– Windows Contributions

Windows: How Does It Work

As you may have already read, Ansible manages Linux/Unix machines using SSH by default.

Starting in version 1.7, Ansible also contains support for managing Windows machines. This uses native PowerShell
remoting, rather than SSH.

Ansible will still be run from a Linux control machine, and uses the “winrm” Python module to talk to remote hosts.
While not supported by Microsoft or Ansible, this Linux control machine can be a Windows Subsystem for Linux
(WSL) bash shell.

No additional software needs to be installed on the remote machines for Ansible to manage them, it still maintains the
agentless properties that make it popular on Linux/Unix.

Note that it is expected you have a basic understanding of Ansible prior to jumping into this section, so if you haven’t
written a Linux playbook first, it might be worthwhile to dig in there first.

Installing on the Control Machine

On a Linux control machine:

pip install "pywinrm>=0.2.2"

: on distributions with multiple python versions, use pip2 or pip2.x, where x matches the python minor version
Ansible is running under.

Using a Windows control machine

A Linux control machine is required to manage Windows hosts. This Linux control machine can be a Windows
Subsystem for Linux (WSL) bash shell.

: Running Ansible from a Windows control machine directly is not a goal of the project. Refrain from asking for this
feature, as it limits what technologies, features, and code we can use in the main project in the future.

: The Windows Subsystem for Linux (Beta) is not supported by Microsoft or Ansible and should not be used for
production systems.

If you would like to experiment with the Windows Subsystem for Linux (WSL), first enable the Windows Subsystem
for Linux using these instructions. This requires a reboot.

Once WSL is enabled, you can open the Bash terminal. The first time you so this, a few questions need to be answered.
At the prompt you can quickly start using the Ansible devel branch by running the following commands:

1.1. Introduction 57

https://www.jeffgeerling.com/blog/2017/using-ansible-through-windows-10s-subsystem-linux

Ansible 2.2 Documentation, 2.4

sudo apt-get install python-pip
pip install pywinrm
git clone https://github.com/ansible/ansible.git
source ansible/hacking/env-setup

After you’ve successfully run these commands, you can start to create your inventory, write example playbooks and
start targetting systems using the plethora of available Windows modules.

: Ansible is also reported to work on Cygwin, but this is more cumbersome and doesn’t scale as well as WSL.

Authentication Options

When connecting to a Windows host there are different authentication options that can be used. The options and the
features they support are:

Option Local Accounts Active Directory Accounts Credential Delegation
Basic Yes No No
Certificate Yes No No
Kerberos No Yes Yes
NTLM Yes Yes No
CredSSP Yes Yes Yes

You can specify which authentication option you wish to use by setting it to the ansible_winrm_transport
variable.

Certificate

Certificate authentication is similar to SSH where a certificate is assigned to a local user and instead of using a password
to authenticate a certificate is used instead.

Kerberos

Kerberos is the preferred option compared to NTLM to use when using an Active Directory account but it requires a
few extra steps to set up on the Ansible control host. You will need to install the “python-kerberos” module on the
Ansible control host (and the MIT krb5 libraries it depends on). The Ansible control host also requires a properly
configured computer account in Active Directory.

Installing python-kerberos dependencies

Via Yum
yum -y install python-devel krb5-devel krb5-libs krb5-workstation

Via Apt (Ubuntu)
sudo apt-get install python-dev libkrb5-dev krb5-user

Via Portage (Gentoo)
emerge -av app-crypt/mit-krb5
emerge -av dev-python/setuptools

Via pkg (FreeBSD)

58 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

sudo pkg install security/krb5

Via OpenCSW (Solaris)
pkgadd -d http://get.opencsw.org/now
/opt/csw/bin/pkgutil -U
/opt/csw/bin/pkgutil -y -i libkrb5_3

Via Pacman (Arch Linux)
pacman -S krb5

Installing python-kerberos

Once you’ve installed the necessary dependencies, the python-kerberos wrapper can be installed via pip:

pip install pywinrm[kerberos]

Kerberos is installed and configured by default on OS X and many Linux distributions. If your control machine has
not already done this for you, you will need to.

Configuring Kerberos

Edit your /etc/krb5.conf (which should be installed as a result of installing packages above) and add the following
information for each domain you need to connect to:

In the section that starts with

[realms]

add the full domain name and the fully qualified domain names of your primary and secondary Active Directory
domain controllers. It should look something like this:

[realms]

MY.DOMAIN.COM = {
kdc = domain-controller1.my.domain.com
kdc = domain-controller2.my.domain.com

}

and in the [domain_realm] section add a line like the following for each domain you want to access:

[domain_realm]
.my.domain.com = MY.DOMAIN.COM

You may wish to configure other settings here, such as the default domain.

Testing a kerberos connection

If you have installed krb5-workstation (yum) or krb5-user (apt-get) you can use the following command to test that
you can be authorised by your domain controller.

kinit user@MY.DOMAIN.COM

1.1. Introduction 59

Ansible 2.2 Documentation, 2.4

Note that the domain part has to be fully qualified and must be in upper case.

To see what tickets if any you have acquired, use the command klist

klist

Automatic kerberos ticket management

Ansible defaults to automatically managing kerberos tickets (as of Ansible 2.3) when both username and password
are specified for a host that’s configured for kerberos. A new ticket is created in a temporary credential cache for each
host, before each task executes (to minimize the chance of ticket expiration). The temporary credential caches are
deleted after each task, and will not interfere with the default credential cache.

To disable automatic ticket management (e.g., to use an existing SSO ticket or call kinit manually to populate the
default credential cache), set ansible_winrm_kinit_mode=manual via inventory.

Automatic ticket management requires a standard kinit binary on the control host system path. To specify a different
location or binary name, set the ansible_winrm_kinit_cmd inventory var to the fully-qualified path to an MIT
krbv5 kinit-compatible binary.

Troubleshooting kerberos connections

If you unable to connect using kerberos, check the following:

Ensure that forward and reverse DNS lookups are working properly on your domain.

To test this, ping the windows host you want to control by name then use the ip address returned with nslookup. You
should get the same name back from DNS when you use nslookup on the ip address.

If you get different hostnames back than the name you originally pinged, speak to your active directory administrator
and get them to check that DNS Scavenging is enabled and that DNS and DHCP are updating each other.

Ensure that the Ansible controller has a properly configured computer account in the domain.

Check your Ansible controller’s clock is synchronised with your domain controller. Kerberos is time sensitive and a
little clock drift can cause tickets not be granted.

Check you are using the real fully qualified domain name for the domain. Sometimes domains are commonly known
to users by aliases. To check this run:

kinit -C user@MY.DOMAIN.COM
klist

If the domain name returned by klist is different from the domain name you requested, you are requesting using an
alias, and you need to update your krb5.conf so you are using the fully qualified domain name, not its alias.

CredSSP

CredSSP authentication can be used to authenticate with both domain and local accounts. It allows credential delega-
tion to do second hop authentication on a remote host by sending an encrypted form of the credentials to the remote
host using the CredSSP protocol.

60 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Installing requests-credssp

To install credssp you can use pip to install the requests-credssp library:

pip install pywinrm[credssp]

CredSSP and TLS 1.2

CredSSP requires the remote host to have TLS 1.2 configured or else the connection will fail. TLS 1.2 is installed by
default from Server 2012 and Windows 8 onwards. For Server 2008, 2008 R2 and Windows 7 you can add TLS 1.2
support by:

• Installing the TLS 1.2 update from Microsoft

• Adding the TLS 1.2 registry keys as shown on this page

Credential Delegation

If you need to interact with a remote resource or run a process that requires the credentials to be stored in the current
session like a certreq.exe then an authentication protocol that supports credential delegation needs to be used.

Inventory

Ansible’s windows support relies on a few standard variables to indicate the username, password, and connection type
(windows) of the remote hosts. These variables are most easily set up in inventory. This is used instead of SSH-keys
or passwords as normally fed into Ansible:

[windows]
winserver1.example.com
winserver2.example.com

: Ansible 2.0 has deprecated the “ssh” from ansible_ssh_user, ansible_ssh_host, and
ansible_ssh_port to become ansible_user, ansible_host, and ansible_port. If you are using
a version of Ansible prior to 2.0, you should continue using the older style variables (ansible_ssh_*). These
shorter variables are ignored, without warning, in older versions of Ansible.

In group_vars/windows.yml, define the following inventory variables:

it is suggested that these be encrypted with ansible-vault:
ansible-vault edit group_vars/windows.yml

ansible_user: Administrator
ansible_password: SecretPasswordGoesHere
ansible_port: 5986
ansible_connection: winrm
The following is necessary for Python 2.7.9+ (or any older Python that has
→˓backported SSLContext, eg, Python 2.7.5 on RHEL7) when using default WinRM self-
→˓signed certificates:
ansible_winrm_server_cert_validation: ignore

Attention for the older style variables (ansible_ssh_*): ansible_ssh_password doesn’t exist, should be ansi-
ble_ssh_pass.

1.1. Introduction 61

https://support.microsoft.com/en-us/help/3080079/update-to-add-rds-support-for-tls-1.1-and-tls-1.2-in-windows-7-or-windows-server-2008-r2
https://technet.microsoft.com/en-us/library/dn786418.aspx#BKMK_SchannelTR_TLS12

Ansible 2.2 Documentation, 2.4

Although Ansible is mostly an SSH-oriented system, Windows management will not happen over SSH (yet).

If you have installed the kerberos module and ansible_user contains @ (e.g. username@realm), Ansible
will first attempt Kerberos authentication. This method uses the principal you are authenticated to Kerberos with on
the control machine and not ansible_user. If that fails, either because you are not signed into Kerberos on the
control machine or because the corresponding domain account on the remote host is not available, then Ansible will
fall back to “plain” username/password authentication.

When using your playbook, don’t forget to specify --ask-vault-pass to provide the password to unlock the file.

Test your configuration like so, by trying to contact your Windows nodes. Note this is not an ICMP ping, but tests the
Ansible communication channel that leverages Windows remoting:

ansible windows [-i inventory] -m win_ping --ask-vault-pass

If you haven’t done anything to prep your systems yet, this won’t work yet. This is covered in a later section about
how to enable PowerShell remoting - and if necessary - how to upgrade PowerShell to a version that is 3 or higher.

You’ll run this command again later though, to make sure everything is working.

Since 2.0, the following custom inventory variables are also supported for additional configuration of WinRM connec-
tions

• ansible_winrm_scheme: Specify the connection scheme (http or https) to use for the WinRM con-
nection. Ansible uses https by default unless the port is 5985.

• ansible_winrm_path: Specify an alternate path to the WinRM endpoint. Ansible uses /wsman by default.

• ansible_winrm_realm: Specify the realm to use for Kerberos authentication. If the username contains @,
Ansible will use the part of the username after @ by default.

• ansible_winrm_transport: Specify one or more transports as a comma-separated list. By default, Ansi-
ble will use kerberos,plaintext if the kerberos module is installed and a realm is defined, otherwise
plaintext.

• ansible_winrm_server_cert_validation: Specify the server certificate validation mode (ignore
or validate). Ansible defaults to validate on Python 2.7.9 and higher, which will result in certificate
validation errors against the Windows self-signed certificates. Unless verifiable certificates have been configured
on the WinRM listeners, this should be set to ignore.

• ansible_winrm_kerberos_delegation: Set to true to enable delegation of commands on the remote
host when using kerberos.

• ansible_winrm_operation_timeout_sec: Increase the default timeout for WinRM operations (de-
fault: 20).

• ansible_winrm_read_timeout_sec: Increase the WinRM read timeout if you experience read timeout
errors (default: 30), e.g. intermittent network issues.

• ansible_winrm_*: Any additional keyword arguments supported by winrm.Protocolmay be provided.

Windows System Prep

In order for Ansible to manage your windows machines, you will have to enable and configure PowerShell remoting.

To automate the setup of WinRM, you can run the examples/scripts/ConfigureRemotingForAnsible.ps1 script on the
remote machine in a PowerShell console as an administrator.

The example script accepts a few arguments which Admins may choose to use to modify the default setup slightly,
which might be appropriate in some cases.

Pass the -CertValidityDays option to customize the expiration date of the generated certificate:

62 Chapter 1. About Ansible

http://blogs.msdn.com/b/powershell/archive/2015/06/03/looking-forward-microsoft-support-for-secure-shell-ssh.aspx
https://github.com/ansible/ansible/blob/devel/examples/scripts/ConfigureRemotingForAnsible.ps1

Ansible 2.2 Documentation, 2.4

powershell.exe -File ConfigureRemotingForAnsible.ps1 -CertValidityDays 100

Pass the -EnableCredSSP switch to enable CredSSP as an authentication option:

powershell.exe -File ConfigureRemotingForAnsible.ps1 -EnableCredSSP

Pass the -ForceNewSSLCert switch to force a new SSL certificate to be attached to an already existing winrm
listener. (Avoids SSL winrm errors on syspreped Windows images after the CN changes):

powershell.exe -File ConfigureRemotingForAnsible.ps1 -ForceNewSSLCert

Pass the -SkipNetworkProfileCheck switch to configure winrm to listen on PUBLIC zone interfaces. (Without
this option, the script will fail if any network interface on device is in PUBLIC zone):

powershell.exe -File ConfigureRemotingForAnsible.ps1 -SkipNetworkProfileCheck

To troubleshoot the ConfigureRemotingForAnsible.ps1 writes every change it makes to the Windows
EventLog (useful when run unattendedly). Additionally the -Verbose option can be used to get more informa-
tion on screen about what it is doing.

: On Windows 7 and Server 2008 R2 machines, due to a bug in Windows Management Framework 3.0, it may be
necessary to install this hotfix http://support.microsoft.com/kb/2842230 to avoid receiving out of memory and stack
overflow exceptions. Newly-installed Server 2008 R2 systems which are not fully up to date with windows updates
are known to have this issue.

Windows 8.1 and Server 2012 R2 are not affected by this issue as they come with Windows Management Framework
4.0.

Getting to PowerShell 3.0 or higher

PowerShell 3.0 or higher is needed for most provided Ansible modules for Windows, and is also required to run the
above setup script. Note that PowerShell 3.0 is only supported on Windows 7 SP1, Windows Server 2008 SP1, and
later releases of Windows.

Looking at an Ansible checkout, copy the examples/scripts/upgrade_to_ps3.ps1 script onto the remote host and run a
PowerShell console as an administrator. You will now be running PowerShell 3 and can try connectivity again using
the win_ping technique referenced above.

What modules are available

Most of the Ansible modules in core Ansible are written for a combination of Linux/Unix machines and arbitrary
web services, though there are various Windows-only modules. These are listed in the “windows” subcategory of the
Ansible module index.

In addition, the following core modules/action-plugins work with Windows:

• add_host

• assert

• async

• debug

• fail

1.1. Introduction 63

http://support.microsoft.com/kb/2842230
https://github.com/ansible/ansible/blob/devel/examples/scripts/upgrade_to_ps3.ps1
http://docs.ansible.com/list_of_windows_modules.html
http://docs.ansible.com/list_of_windows_modules.html

Ansible 2.2 Documentation, 2.4

• fetch

• group_by

• include_vars

• meta

• pause

• raw

• script

• set_fact

• setup

• slurp

• template (also: win_template)

Some modules can be utilised in playbooks that target windows by delegating to localhost, depending on what you are
attempting to achieve. For example, assemble can be used to create a file on your ansible controller that is then sent
to your windows targets using win_copy.

In many cases, there is no need to use or write an Ansible module. In particular, the script module can be used to
run arbitrary PowerShell scripts, allowing Windows administrators familiar with PowerShell a very native way to do
things, as in the following playbook:

- hosts: windows
tasks:
- script: foo.ps1 --argument --other-argument

But also the win_shell module allows for running Powershell snippets inline:

- hosts: windows
tasks:
- name: Remove Appx packages (and their hindering file assocations)

win_shell: |
Get-AppxPackage -name "Microsoft.ZuneMusic" | Remove-AppxPackage
Get-AppxPackage -name "Microsoft.ZuneVideo" | Remove-AppxPackage

Developers: Supported modules and how it works

Developing Ansible modules are covered in a later section of the documentation, with a focus on Linux/Unix. What if
you want to write Windows modules for Ansible though?

For Windows, Ansible modules are implemented in PowerShell. Skim those Linux/Unix module development chapters
before proceeding. Windows modules in the core and extras repo live in a windows/ subdir. Custom modules can
go directly into the Ansible library/ directories or those added in ansible.cfg. Documentation lives in a .py file
with the same name. For example, if a module is named win_ping, there will be embedded documentation in the
win_ping.py file, and the actual PowerShell code will live in a win_ping.ps1 file. Take a look at the sources
and this will make more sense.

Modules (ps1 files) should start as follows:

#!powershell
<license>

WANT_JSON

64 Chapter 1. About Ansible

http://docs.ansible.com/developing_modules.html

Ansible 2.2 Documentation, 2.4

POWERSHELL_COMMON

code goes here, reading in stdin as JSON and outputting JSON

The above magic is necessary to tell Ansible to mix in some common code and also know how to push modules out.
The common code contains some nice wrappers around working with hash data structures and emitting JSON results,
and possibly a few more useful things. Regular Ansible has this same concept for reusing Python code - this is just the
windows equivalent.

What modules you see in windows/ are just a start. Additional modules may be submitted as pull requests to github.

Windows Facts

Just as with Linux/Unix, facts can be gathered for windows hosts, which will return things such as the operating system
version. To see what variables are available about a windows host, run the following:

ansible winhost.example.com -m setup

Note that this command invocation is exactly the same as the Linux/Unix equivalent.

Windows Playbook Examples

Here is an example of pushing and running a PowerShell script:

- name: test script module
hosts: windows
tasks:
- name: run test script

script: files/test_script.ps1

Running individual commands uses the win_command <https://docs.ansible.com/ansible/
win_command_module.html> or win_shell <https://docs.ansible.com/ansible/
win_shell_module.html> module, as opposed to the shell or command module as is common on Linux/Unix
operating systems:

- name: test raw module
hosts: windows
tasks:
- name: run ipconfig

win_command: ipconfig
register: ipconfig

- debug: var=ipconfig

Running common DOS commands like del, move, or copy is unlikely to work on a remote Windows Server using
Powershell, but they can work by prefacing the commands with CMD /C and enclosing the command in double quotes
as in this example:

- name: another raw module example
hosts: windows
tasks:

- name: Move file on remote Windows Server from one location to another
win_command: CMD /C "MOVE /Y C:\teststuff\myfile.conf C:\builds\smtp.conf"

You may wind up with a more readable playbook by using the PowerShell equivalents of DOS commands. For
example, to achieve the same effect as the example above, you could use:

1.1. Introduction 65

Ansible 2.2 Documentation, 2.4

- name: another raw module example demonstrating powershell one liner
hosts: windows
tasks:

- name: Move file on remote Windows Server from one location to another
win_command: Powershell.exe "Move-Item C:\teststuff\myfile.conf C:\builds\smtp.

→˓conf"

Bear in mind that using win_command or win_shell will always report changed, and it is your responsiblity
to ensure PowerShell will need to handle idempotency as appropriate (the move examples above are inherently not
idempotent), so where possible use (or write) a module.

Here’s an example of how to use the win_stat module to test for file existence. Note that the data returned by the
win_stat module is slightly different than what is provided by the Linux equivalent:

- name: test stat module
hosts: windows
tasks:
- name: test stat module on file

win_stat: path="C:/Windows/win.ini"
register: stat_file

- debug: var=stat_file

- name: check stat_file result
assert:

that:
- "stat_file.stat.exists"
- "not stat_file.stat.isdir"
- "stat_file.stat.size > 0"
- "stat_file.stat.md5"

Windows Contributions

Windows support in Ansible is still relatively new, and contributions are quite welcome, whether this is in the form of
new modules, tweaks to existing modules, documentation, or something else. Please stop by the ansible-devel mailing
list if you would like to get involved and say hi.

:

Developing Modules How to write modules

Playbooks Learning Ansible’s configuration management language

List of Windows Modules Windows specific module list, all implemented in PowerShell

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Networking Support

Topics

• Networking Support

– Working with Networking Devices

66 Chapter 1. About Ansible

http://docs.ansible.com/list_of_windows_modules.html
http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

– Network Automation Installation

– Available Networking Modules

– Connecting to Networking Devices

– Networking Environment Variables

– Conditionals in Networking Modules

Working with Networking Devices

Starting with Ansible version 2.1, you can now use the familiar Ansible models of playbook authoring and module
development to manage heterogenous networking devices. Ansible supports a growing number of network devices
using both CLI over SSH and API (when available) transports.

Network Automation Installation

• Install the latest Ansible release.

Available Networking Modules

Most standard Ansible modules are designed to work with Linux/Unix or Windows machines and will not work with
networking devices. Some modules (including “slurp”, “raw”, and “setup”) are platform-agnostic and will work with
networking devices.

To see what modules are available for networking devices, please browse the “networking” section of the Ansible
module index.

Connecting to Networking Devices

All core networking modules implement a provider argument, which is a collection of arguments used to define the
characteristics of how to connect to the device. This section will assist in understanding how the provider argument is
used.

Each core network module supports an underlying operating system and transport. The operating system is a one-
to-one match with the module, and the transport maintains a one-to-many relationship to the operating system as
appropriate. Some network operating systems only have a single transport option.

Each core network module supports some basic arguments for configuring the transport:

• host - defines the hostname or IP address of the remote host

• port - defines the port to connect to

• username - defines the username to use to authenticate the connection

• password - defines the password to use to authenticate the connection

• transport - defines the type of connection transport to build

• authorize - enables privilege escalation for devices that require it

• auth_pass - defines the password, if needed, for privilege escalation

1.1. Introduction 67

http://docs.ansible.com/ansible/intro_installation.html
https://docs.ansible.com/ansible/list_of_network_modules.html
https://docs.ansible.com/ansible/list_of_network_modules.html

Ansible 2.2 Documentation, 2.4

Individual modules can set defaults for these arguments to common values that match device default configuration
settings. For instance, the default value for transport is universally ‘cli’. Some modules support other values such as
EOS (eapi) and NXOS (nxapi), while some only support ‘cli’. All arguments are fully documented for each module.

By allowing individual tasks to set the transport arguments independently, modules that use different transport mech-
anisms and authentication credentials can be combined as necessary.

One downside to this approach is that every task needs to include the required arguments. This is where the provider
argument comes into play. The provider argument accepts keyword arguments and passes them through to the task to
assign connection and authentication parameters.

The following two config modules are essentially identical (using nxos_config) as an example but it applies to all core
networking modules:

nxos_config:

src: config.j2
host: "{{ inventory_hostname }}"
username: "{{ ansible_ssh_user }}"
password: "{{ ansible_ssh_pass }}"
transport: cli

vars:

cli:
host: "{{ inventory_hostname }}"
username: "{{ ansible_ssh_user }}"
password: "{{ ansible_ssh_pass }} "
transport: cli

nxos_config:
src: config.j2
provider: "{{ cli }}"

Given the above two examples that are equivalent, the arguments can also be used to establish precedence and defaults.
Consider the following example:

vars:

cli:
host: "{{ inventory_hostname }}"
username: operator
password: secret
transport: cli

tasks:
- nxos_config:

src: config.j2
provider: "{{ cli }}"
username: admin
password: admin

In this example, the values of admin for username and admin for password will override the values of operator in
cli[’username’] and secret in cli[’password’])

This is true for all values in the provider including transport. So you could have a singular task that is now supported
over CLI or NXAPI (assuming the configuration is value).

68 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

vars:

cli:
host: "{{ inventory_hostname }}"
username: operator
password: secret
transport: cli

tasks:
- nxos_config:

src: config.j2
provider: "{{ cli }}"
transport: nxapi

If all values are provided via the provider argument, the rules for requirements are still honored for the module. For
instance, take the following scenario:

vars:

conn:
password: cisco_pass
transport: cli

tasks:
- nxos_config:

src: config.j2
provider: "{{ conn }}"

Running the above task will cause an error to be generated with a message that required parameters are missing.

"msg": "missing required arguments: username,host"

Overall, this provides a very granular level of control over how credentials are used with modules. It provides the
playbook designer maximum control for changing context during a playbook run as needed.

Networking Environment Variables

The following environment variables are available to Ansible networking modules:

username ANSIBLE_NET_USERNAME password ANSIBLE_NET_PASSWORD ssh_keyfile ANSI-
BLE_NET_SSH_KEYFILE authorize ANSIBLE_NET_AUTHORIZE auth_pass ANSIBLE_NET_AUTH_PASS

Variables are evaulated in the following order, listed from lowest to highest priority:

• Default

• Environment

• Provider

• Task arguments

Conditionals in Networking Modules

Ansible allows you to use conditionals to control the flow of your playbooks. Ansible networking command modules
use the following unique conditional statements.

• eq - Equal

1.1. Introduction 69

Ansible 2.2 Documentation, 2.4

• neq - Not equal

• gt - Greater than

• ge - Greater than or equal

• lt - Less than

• le - Less than or equal

• contains - Object contains specified item

Conditional statements evalute the results from the commands that are executed remotely on the device. Once the
task executes the command set, the waitfor argument can be used to evalute the results before returning control to the
Ansible playbook.

For example:

- name: wait for interface to be admin enabled

eos_command:
commands:

- show interface Ethernet4 | json
waitfor:

- "result[0].interfaces.Ethernet4.interfaceStatus eq connected"

In the above example task, the command show interface Ethernet4 | json is executed on the remote de-
vice and the results are evaluated. If the path (result[0].interfaces.Ethernet4.interfaceStatus)
is not equal to “connected”, then the command is retried. This process continues until either the condition is satisfied
or the number of retries has expired (by default, this is 10 retries at 1 second intervals).

The commands module can also evaluate more than one set of command results in an interface. For instance:

- name: wait for interfaces to be admin enabled

eos_command:
commands:

- show interface Ethernet4 | json
- show interface Ethernet5 | json

waitfor:
- "result[0].interfaces.Ethernet4.interfaceStatus eq connected"
- "result[1].interfaces.Ethernet4.interfaceStatus eq connected"

In the above example, two commands are executed on the remote device, and the results are evaluated. By specifying
the result index value (0 or 1), the correct result output is checked against the conditional.

The waitfor argument must always start with result and then the command index in [], where 0 is the first command in
the commands list, 1 is the second command, 2 is the third and so on.

Quickstart Video

We’ve recorded a short video that shows how to get started with Ansible that you may like to use alongside the
documentation.

The quickstart video is about 13 minutes long and will show you some of the basics about your first steps with Ansible.

Enjoy, and be sure to visit the rest of the documentation to learn more.

70 Chapter 1. About Ansible

https://www.ansible.com/quick-start-video

Ansible 2.2 Documentation, 2.4

Playbooks

Playbooks are Ansible’s configuration, deployment, and orchestration language. They can describe a policy you want
your remote systems to enforce, or a set of steps in a general IT process.

If Ansible modules are the tools in your workshop, playbooks are your instruction manuals, and your inventory of
hosts are your raw material.

At a basic level, playbooks can be used to manage configurations of and deployments to remote machines. At a more
advanced level, they can sequence multi-tier rollouts involving rolling updates, and can delegate actions to other hosts,
interacting with monitoring servers and load balancers along the way.

While there’s a lot of information here, there’s no need to learn everything at once. You can start small and pick up
more features over time as you need them.

Playbooks are designed to be human-readable and are developed in a basic text language. There are multiple ways to
organize playbooks and the files they include, and we’ll offer up some suggestions on that and making the most out of
Ansible.

It is recommended to look at Example Playbooks while reading along with the playbook documentation. These
illustrate best practices as well as how to put many of the various concepts together.

Intro to Playbooks

About Playbooks

Playbooks are a completely different way to use ansible than in adhoc task execution mode, and are particularly
powerful.

Simply put, playbooks are the basis for a really simple configuration management and multi-machine deployment
system, unlike any that already exist, and one that is very well suited to deploying complex applications.

Playbooks can declare configurations, but they can also orchestrate steps of any manual ordered process, even as
different steps must bounce back and forth between sets of machines in particular orders. They can launch tasks
synchronously or asynchronously.

While you might run the main /usr/bin/ansible program for ad-hoc tasks, playbooks are more likely to be kept
in source control and used to push out your configuration or assure the configurations of your remote systems are in
spec.

There are also some full sets of playbooks illustrating a lot of these techniques in the ansible-examples repository.
We’d recommend looking at these in another tab as you go along.

There are also many jumping off points after you learn playbooks, so hop back to the documentation index after you’re
done with this section.

Playbook Language Example

Playbooks are expressed in YAML format (see YAML Syntax) and have a minimum of syntax, which intentionally tries
to not be a programming language or script, but rather a model of a configuration or a process.

Each playbook is composed of one or more ‘plays’ in a list.

The goal of a play is to map a group of hosts to some well defined roles, represented by things ansible calls tasks. At
a basic level, a task is nothing more than a call to an ansible module (see About Modules).

1.3. Playbooks 71

https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples

Ansible 2.2 Documentation, 2.4

By composing a playbook of multiple ‘plays’, it is possible to orchestrate multi-machine deployments, running certain
steps on all machines in the webservers group, then certain steps on the database server group, then more commands
back on the webservers group, etc.

“plays” are more or less a sports analogy. You can have quite a lot of plays that affect your systems to do different
things. It’s not as if you were just defining one particular state or model, and you can run different plays at different
times.

For starters, here’s a playbook that contains just one play:

- hosts: webservers

vars:
http_port: 80
max_clients: 200

remote_user: root
tasks:
- name: ensure apache is at the latest version
yum: name=httpd state=latest

- name: write the apache config file
template: src=/srv/httpd.j2 dest=/etc/httpd.conf
notify:
- restart apache

- name: ensure apache is running (and enable it at boot)
service: name=httpd state=started enabled=yes

handlers:
- name: restart apache

service: name=httpd state=restarted

When working with tasks that have really long parameters or modules that take many parameters, you can break tasks
items over multiple lines to improve the structure. Below is another version of the above example but using YAML
dictionaries to supply the modules with their key=value arguments.:

- hosts: webservers

vars:
http_port: 80
max_clients: 200

remote_user: root
tasks:
- name: ensure apache is at the latest version
yum:

name: httpd
state: latest

- name: write the apache config file
template:

src: /srv/httpd.j2
dest: /etc/httpd.conf

notify:
- restart apache

- name: ensure apache is running
service:

name: httpd
state: started

handlers:
- name: restart apache

service:
name: httpd
state: restarted

72 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Playbooks can contain multiple plays. You may have a playbook that targets first the web servers, and then the database
servers. For example:

- hosts: webservers

remote_user: root

tasks:
- name: ensure apache is at the latest version
yum: name=httpd state=latest

- name: write the apache config file
template: src=/srv/httpd.j2 dest=/etc/httpd.conf

- hosts: databases
remote_user: root

tasks:
- name: ensure postgresql is at the latest version
yum: name=postgresql state=latest

- name: ensure that postgresql is started
service: name=postgresql state=started

You can use this method to switch between the host group you’re targeting, the username logging into the remote
servers, whether to sudo or not, and so forth. Plays, like tasks, run in the order specified in the playbook: top to
bottom.

Below, we’ll break down what the various features of the playbook language are.

Basics

Hosts and Users

For each play in a playbook, you get to choose which machines in your infrastructure to target and what remote user
to complete the steps (called tasks) as.

The hosts line is a list of one or more groups or host patterns, separated by colons, as described in the Patterns
documentation. The remote_user is just the name of the user account:

- hosts: webservers

remote_user: root

: The remote_user parameter was formerly called just user. It was renamed in Ansible 1.4 to make it more
distinguishable from the user module (used to create users on remote systems).

Remote users can also be defined per task:

- hosts: webservers

remote_user: root
tasks:
- name: test connection

ping:
remote_user: yourname

1.3. Playbooks 73

Ansible 2.2 Documentation, 2.4

: The remote_user parameter for tasks was added in 1.4.

Support for running things as another user is also available (see Become (Privilege Escalation)):

- hosts: webservers

remote_user: yourname
become: yes

You can also use become on a particular task instead of the whole play:

- hosts: webservers

remote_user: yourname
tasks:
- service: name=nginx state=started

become: yes
become_method: sudo

: The become syntax deprecates the old sudo/su specific syntax beginning in 1.9.

You can also login as you, and then become a user different than root:

- hosts: webservers

remote_user: yourname
become: yes
become_user: postgres

You can also use other privilege escalation methods, like su:

- hosts: webservers

remote_user: yourname
become: yes
become_method: su

If you need to specify a password to sudo, run ansible-playbook with --ask-become-pass or when using
the old sudo syntax --ask-sudo-pass (-K). If you run a become playbook and the playbook seems to hang, it’s
probably stuck at the privilege escalation prompt. Just Control-C to kill it and run it again adding the appropriate
password.

: When using become_user to a user other than root, the module arguments are briefly written into a random
tempfile in /tmp. These are deleted immediately after the command is executed. This only occurs when changing
privileges from a user like ‘bob’ to ‘timmy’, not when going from ‘bob’ to ‘root’, or logging in directly as ‘bob’ or
‘root’. If it concerns you that this data is briefly readable (not writable), avoid transferring unencrypted passwords
with become_user set. In other cases, /tmp is not used and this does not come into play. Ansible also takes care to
not log password parameters.

74 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Tasks list

Each play contains a list of tasks. Tasks are executed in order, one at a time, against all machines matched by the host
pattern, before moving on to the next task. It is important to understand that, within a play, all hosts are going to get
the same task directives. It is the purpose of a play to map a selection of hosts to tasks.

When running the playbook, which runs top to bottom, hosts with failed tasks are taken out of the rotation for the
entire playbook. If things fail, simply correct the playbook file and rerun.

The goal of each task is to execute a module, with very specific arguments. Variables, as mentioned above, can be
used in arguments to modules.

Modules should be idempotent, that is, running a module multiple times in a sequence should have the same effect as
running it just once. One way to achieve idempotency is to have a module check whether its desired final state has
already been achieved, and if that state has been achieved, to exit without performing any actions. If all the modules a
playbook uses are idempotent, then the playbook itself is likely to be idempotent, so re-running the playbook should
be safe.

The command and shell modules will typically rerun the same command again, which is totally ok if the command
is something like chmod or setsebool, etc. Though there is a creates flag available which can be used to make
these modules also idempotent.

Every task should have a name, which is included in the output from running the playbook. This is human readable
output, and so it is useful to provide good descriptions of each task step. If the name is not provided though, the string
fed to ‘action’ will be used for output.

Tasks can be declared using the legacy action: module options format, but it is recommended that you use
the more conventional module: options format. This recommended format is used throughout the documenta-
tion, but you may encounter the older format in some playbooks.

Here is what a basic task looks like. As with most modules, the service module takes key=value arguments:

tasks:
- name: make sure apache is running
service: name=httpd state=started

The command and shell modules are the only modules that just take a list of arguments and don’t use the key=value
form. This makes them work as simply as you would expect:

tasks:
- name: enable selinux
command: /sbin/setenforce 1

The command and shell module care about return codes, so if you have a command whose successful exit code is not
zero, you may wish to do this:

tasks:
- name: run this command and ignore the result
shell: /usr/bin/somecommand || /bin/true

Or this:

tasks:
- name: run this command and ignore the result
shell: /usr/bin/somecommand
ignore_errors: True

If the action line is getting too long for comfort you can break it on a space and indent any continuation lines:

1.3. Playbooks 75

Ansible 2.2 Documentation, 2.4

tasks:
- name: Copy ansible inventory file to client
copy: src=/etc/ansible/hosts dest=/etc/ansible/hosts

owner=root group=root mode=0644

Variables can be used in action lines. Suppose you defined a variable called vhost in the vars section, you could
do this:

tasks:
- name: create a virtual host file for {{ vhost }}
template: src=somefile.j2 dest=/etc/httpd/conf.d/{{ vhost }}

Those same variables are usable in templates, which we’ll get to later.

Now in a very basic playbook all the tasks will be listed directly in that play, though it will usually make more sense
to break up tasks using the include: directive. We’ll show that a bit later.

Action Shorthand

0.8 .

Ansible prefers listing modules like this in 0.8 and later:

template: src=templates/foo.j2 dest=/etc/foo.conf

You will notice in earlier versions, this was only available as:

action: template src=templates/foo.j2 dest=/etc/foo.conf

The old form continues to work in newer versions without any plan of deprecation.

Handlers: Running Operations On Change

As we’ve mentioned, modules should be idempotent and can relay when they have made a change on the remote
system. Playbooks recognize this and have a basic event system that can be used to respond to change.

These ‘notify’ actions are triggered at the end of each block of tasks in a play, and will only be triggered once even if
notified by multiple different tasks.

For instance, multiple resources may indicate that apache needs to be restarted because they have changed a config
file, but apache will only be bounced once to avoid unnecessary restarts.

Here’s an example of restarting two services when the contents of a file change, but only if the file changes:

- name: template configuration file
template: src=template.j2 dest=/etc/foo.conf
notify:

- restart memcached
- restart apache

The things listed in the notify section of a task are called handlers.

Handlers are lists of tasks, not really any different from regular tasks, that are referenced by a globally unique name,
and are notified by notifiers. If nothing notifies a handler, it will not run. Regardless of how many tasks notify a
handler, it will run only once, after all of the tasks complete in a particular play.

Here’s an example handlers section:

76 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

handlers:
- name: restart memcached

service: name=memcached state=restarted
- name: restart apache

service: name=apache state=restarted

As of Ansible 2.2, handlers can also “listen” to generic topics, and tasks can notify those topics as follows:

handlers:
- name: restart memcached

service: name=memcached state=restarted
listen: "restart web services"

- name: restart apache
service: name=apache state=restarted
listen: "restart web services"

tasks:
- name: restart everything

command: echo "this task will restart the web services"
notify: "restart web services"

This use makes it much easier to trigger multiple handlers. It also decouples handlers from their names, making it
easier to share handlers among playbooks and roles (especially when using 3rd party roles from a shared source like
Galaxy).

:

• Notify handlers are always run in the same order they are defined, not in the order listed in the notify-statement.
This is also the case for handlers using listen.

• Handler names and listen topics live in a global namespace.

• If two handler tasks have the same name, only one will run. *

• You cannot notify a handler that is defined inside of an include. As of Ansible 2.1, this does work, however the
include must be static.

Roles are described later on, but it’s worthwhile to point out that:

• handlers notified within pre_tasks, tasks, and post_tasks sections are automatically flushed in the end
of section where they were notified;

• handlers notified within roles section are automatically flushed in the end of tasks section, but before any
tasks handlers.

If you ever want to flush all the handler commands immediately though, in 1.2 and later, you can:

tasks:
- shell: some tasks go here
- meta: flush_handlers
- shell: some other tasks

In the above example any queued up handlers would be processed early when the meta statement was reached. This
is a bit of a niche case but can come in handy from time to time.

1.3. Playbooks 77

https://github.com/ansible/ansible/issues/4943

Ansible 2.2 Documentation, 2.4

Executing A Playbook

Now that you’ve learned playbook syntax, how do you run a playbook? It’s simple. Let’s run a playbook using a
parallelism level of 10:

ansible-playbook playbook.yml -f 10

Ansible-Pull

Should you want to invert the architecture of Ansible, so that nodes check in to a central location, instead of pushing
configuration out to them, you can.

The ansible-pull is a small script that will checkout a repo of configuration instructions from git, and then run
ansible-playbook against that content.

Assuming you load balance your checkout location, ansible-pull scales essentially infinitely.

Run ansible-pull --help for details.

There’s also a clever playbook available to configure ansible-pull via a crontab from push mode.

Tips and Tricks

To check the syntax of a playbook, use ansible-playbook with the --syntax-check flag. This will run the
playbook file through the parser to ensure its included files, roles, etc. have no syntax problems.

Look at the bottom of the playbook execution for a summary of the nodes that were targeted and how they performed.
General failures and fatal “unreachable” communication attempts are kept separate in the counts.

If you ever want to see detailed output from successful modules as well as unsuccessful ones, use the --verbose
flag. This is available in Ansible 0.5 and later.

Ansible playbook output is vastly upgraded if the cowsay package is installed. Try it!

To see what hosts would be affected by a playbook before you run it, you can do this:

ansible-playbook playbook.yml --list-hosts

:

YAML Syntax Learn about YAML syntax

Best Practices Various tips about managing playbooks in the real world

Ansible Documentation Hop back to the documentation index for a lot of special topics about playbooks

About Modules Learn about available modules

Developing Modules Learn how to extend Ansible by writing your own modules

Patterns Learn about how to select hosts

Github examples directory Complete end-to-end playbook examples

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

78 Chapter 1. About Ansible

https://github.com/ansible/ansible-examples/blob/master/language_features/ansible_pull.yml
https://github.com/ansible/ansible-examples
http://groups.google.com/group/ansible-project

Ansible 2.2 Documentation, 2.4

Playbook Roles and Include Statements

Topics

• Playbook Roles and Include Statements

– Introduction

– Task versus Play includes

– Task Include Files And Encouraging Reuse

– Dynamic versus Static Includes

– Roles

– Role Default Variables

– Role Dependencies

– Embedding Modules and Plugins In Roles

– Ansible Galaxy

Introduction

While it is possible to write a playbook in one very large file (and you might start out learning playbooks this way),
eventually you’ll want to reuse files and start to organize things.

At a basic level, including task files allows you to break up bits of configuration policy into smaller files. Task includes
pull in tasks from other files. Since handlers are tasks too, you can also include handler files from the ‘handler’ section.

See Playbooks if you need a review of these concepts.

Playbooks can also include plays from other playbook files. When that is done, the plays will be inserted into the
playbook to form a longer list of plays.

When you start to think about it – tasks, handlers, variables, and so on – begin to form larger concepts. You start
to think about modeling what something is, rather than how to make something look like something. It’s no longer
“apply this handful of THINGS to these hosts”, you say “these hosts are dbservers” or “these hosts are webservers”. In
programming, we might call that “encapsulating” how things work. For instance, you can drive a car without knowing
how the engine works.

Roles in Ansible build on the idea of include files and combine them to form clean, reusable abstractions – they allow
you to focus more on the big picture and only dive down into the details when needed.

We’ll start with understanding includes so roles make more sense, but our ultimate goal should be understanding roles
– roles are great and you should use them every time you write playbooks.

See the ansible-examples repository on GitHub for lots of examples of all of this put together. You may wish to have
this open in a separate tab as you dive in.

Task versus Play includes

Tasks and plays both use the include keyword, but implement the keyword differently. The difference between them is
determined by their positioning and content. If the include is inside a play it can only be a ‘task’ include and include
a list of tasks; if it is at the top level, it can only include plays. For example:

1.3. Playbooks 79

https://github.com/ansible/ansible-examples

Ansible 2.2 Documentation, 2.4

this is a 'play' include
- include: intro_example.yml

- name: another play
hosts: all
tasks:
- debug: msg=hello

this is a 'task' include
- include: stuff.yml

A ‘task’ include can appear anywhere a task can, but a ‘play’ include cannot be inside other plays only alongside them
at the same level. While ‘task’ includes can take other parameters and have the included tasks inherit them, ‘play’
includes are very limited and most directives do not work.

Task Include Files And Encouraging Reuse

Suppose you want to reuse lists of tasks between plays or playbooks. You can use include files to do this. Use of
included task lists is a great way to define a role that system is going to fulfill. Remember, the goal of a play in a
playbook is to map a group of systems into multiple roles. Let’s see what this looks like...

A task include file simply contains a flat list of tasks, like so:

possibly saved as tasks/foo.yml

- name: placeholder foo
command: /bin/foo

- name: placeholder bar
command: /bin/bar

Include directives look like this, and can be mixed in with regular tasks in a playbook:

tasks:

- include: tasks/foo.yml

You can also pass variables into includes. We call this a ‘parameterized include’.

For instance, to deploy to multiple wordpress instances, I could encapsulate all of my wordpress tasks in a single
wordpress.yml file, and use it like so:

tasks:
- include: wordpress.yml wp_user=timmy
- include: wordpress.yml wp_user=alice
- include: wordpress.yml wp_user=bob

Starting in 1.0, variables can also be passed to include files using an alternative syntax, which also supports structured
variables:

tasks:

- include: wordpress.yml
vars:

wp_user: timmy
ssh_keys:

80 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- keys/one.txt
- keys/two.txt

Using either syntax, variables passed in can then be used in the included files. We’ll cover them in Variables. You can
reference them like this:

{{ wp_user }}

(In addition to the explicitly passed-in parameters, all variables from the vars section are also available for use here as
well.)

: As of 1.0, task include statements can be used at arbitrary depth. They were previously limited to a single level, so
task includes could not include other files containing task includes.

Includes can also be used in the ‘handlers’ section, for instance, if you want to define how to restart apache, you only
have to do that once for all of your playbooks. You might make a handlers.yml that looks like:

this might be in a file like handlers/handlers.yml
- name: restart apache

service: name=apache state=restarted

And in your main playbook file, just include it like so, at the bottom of a play:

handlers:
- include: handlers/handlers.yml

You can mix in includes along with your regular non-included tasks and handlers.

Includes can also be used to import one playbook file into another. This allows you to define a top-level playbook that
is composed of other playbooks.

For example:

- name: this is a play at the top level of a file
hosts: all
remote_user: root

tasks:

- name: say hi
tags: foo
shell: echo "hi..."

- include: load_balancers.yml
- include: webservers.yml
- include: dbservers.yml

Note that you cannot do variable substitution when including one playbook inside another.

: You can not conditionally pass the location to an include file, like you can with ‘vars_files’. If you find yourself
needing to do this, consider how you can restructure your playbook to be more class/role oriented. This is to say you
cannot use a ‘fact’ to decide what include file to use. All hosts contained within the play are going to get the same
tasks. (‘when‘ provides some ability for hosts to conditionally skip tasks).

1.3. Playbooks 81

Ansible 2.2 Documentation, 2.4

Dynamic versus Static Includes

In Ansible 2.0 there were changes on how ‘task’ includes are processed. The ‘play’ includes are still ‘static’ or
unchanged.

In previous versions of Ansible, all includes acted as a pre-processor statement and were read during playbook parsing
time. This created problems with things like inventory variables (like group and host vars, which are not available
during the parsing time) were used in the included file name.

After Ansible 2.0, ‘task’ includes can be ‘dynamic’, meaning they are not evaluated until the include task is reached
during the play execution. This change allows the reintroduction of loops on include statements, such as the following:

- include: foo.yml param={{item}}
with_items:
- 1
- 2
- 3

It is also possible to use variables from any source with a dynamic include:

- include: "{{inventory_hostname}}.yml"

Starting in 2.1, Ansible attempts to detect when a ‘task’ include should be dynamic (read below for details on how
detection works).

: When an include statement loads different tasks for different hosts, the linear strategy keeps the hosts in lock-
step by alternating which hosts are executing tasks while doing a noop for all other hosts. For example, if you had
hostA, hostB and hostC with the above example, hostA would execute all of the tasks in hostA.yml while hostB and
hostC waited. It is generally better to do the above with the free strategy, which does not force hosts to execute in
lock-step.

: In Ansible 2.0 task includes were always considered dynamic, but since this created problems in existing playbooks
we changed the default in 2.1. Continue reading below for more details.

Dynamic includes introduced some other limitations due to the fact that the included file is not read in until that task
is reached during the execution of the play. When using dynamic includes, it is important to keep these limitations in
mind:

• You cannot use notify to trigger a handler name which comes from a dynamic include.

• You cannot use --start-at-task to begin execution at a task inside a dynamic include.

• Tags which only exist inside a dynamic include will not show up in –list-tags output.

• Tasks which only exist inside a dynamic include will not show up in –list-tasks output.

: In Ansible 1.9.x and earlier, an error would be raised if a tag name was used with --tags or --skip-tags. This
error was disabled in Ansible 2.0 to prevent incorrect failures with tags which only existed inside of dynamic includes.

To work around these limitations, Ansible 2.1 introduces the static option for includes:

- include: foo.yml
static: <yes|no|true|false>

82 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

By default, starting in Ansible 2.1, ‘task’ includes are automatically treated as static rather than dynamic when the
include meets the following conditions:

• The include does not use any loops

• The included file name does not use any variables

• The static option is not explicitly disabled (static: no is not present)

• The ansible.cfg options to force static includes (see below) are disabled

Two options are available in the ansible.cfg configuration for static includes:

• task_includes_static - forces all includes in tasks sections to be static.

• handler_includes_static - forces all includes in handlers sections to be static.

These options allow users to force playbooks to behave exactly as they did in 1.9.x and before.

One example on how ‘static’ vs ‘dynamic’ behaviour can impact your tasks:

- include: "stuff.yml"
static: no
when: verto is defined

If this task were ‘static’ the when would be inherited by the tasks included, but forcing it to be dynamic, the when is
now applied to the include task itself.

Roles

1.2 .

Now that you have learned about tasks and handlers, what is the best way to organize your playbooks? The short
answer is to use roles! Roles are ways of automatically loading certain vars_files, tasks, and handlers based on a
known file structure. Grouping content by roles also allows easy sharing of roles with other users.

Roles are just automation around ‘include’ directives as described above, and really don’t contain much additional
magic beyond some improvements to search path handling for referenced files. However, that can be a big thing!

Example project structure:

site.yml
webservers.yml
fooservers.yml
roles/

common/
files/
templates/
tasks/
handlers/
vars/
defaults/
meta/

webservers/
files/
templates/
tasks/
handlers/
vars/
defaults/
meta/

1.3. Playbooks 83

Ansible 2.2 Documentation, 2.4

In a playbook, it would look like this:

- hosts: webservers

roles:
- common
- webservers

This designates the following behaviors, for each role ‘x’:

• If roles/x/tasks/main.yml exists, tasks listed therein will be added to the play

• If roles/x/handlers/main.yml exists, handlers listed therein will be added to the play

• If roles/x/vars/main.yml exists, variables listed therein will be added to the play

• If roles/x/defaults/main.yml exists, variables listed therein will be added to the play

• If roles/x/meta/main.yml exists, any role dependencies listed therein will be added to the list of roles (1.3 and
later)

• Any copy, script, template or include tasks (in the role) can reference files in roles/x/{files,templates,tasks}/ (dir
depends on task) without having to path them relatively or absolutely

In Ansible 1.4 and later you can configure a roles_path to search for roles. Use this to check all of your common roles
out to one location, and share them easily between multiple playbook projects. See Configuration file for details about
how to set this up in ansible.cfg.

: Role dependencies are discussed below.

If any files are not present, they are just ignored. So it’s ok to not have a ‘vars/’ subdirectory for the role, for instance.

Note, you are still allowed to list tasks, vars_files, and handlers “loose” in playbooks without using roles, but roles
are a good organizational feature and are highly recommended. If there are loose things in the playbook, the roles are
evaluated first.

Also, should you wish to parameterize roles, by adding variables, you can do so, like this:

- hosts: webservers
roles:
- common
- { role: foo_app_instance, dir: '/opt/a', app_port: 5000 }
- { role: foo_app_instance, dir: '/opt/b', app_port: 5001 }

While it’s probably not something you should do often, you can also conditionally apply roles like so:

- hosts: webservers
roles:
- { role: some_role, when: "ansible_os_family == 'RedHat'" }

This works by applying the conditional to every task in the role. Conditionals are covered later on in the documentation.

Finally, you may wish to assign tags to the roles you specify. You can do so inline:

84 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- hosts: webservers
roles:
- { role: foo, tags: ["bar", "baz"] }

Note that this tags all of the tasks in that role with the tags specified, overriding any tags that are specified inside the
role. If you find yourself building a role with lots of tags and you want to call subsets of the role at different times,
you should consider just splitting that role into multiple roles.

If the play still has a ‘tasks’ section, those tasks are executed after roles are applied.

If you want to define certain tasks to happen before AND after roles are applied, you can do this:

- hosts: webservers

pre_tasks:
- shell: echo 'hello'

roles:
- { role: some_role }

tasks:
- shell: echo 'still busy'

post_tasks:
- shell: echo 'goodbye'

: If using tags with tasks (described later as a means of only running part of a playbook), be sure to also tag your
pre_tasks and post_tasks and pass those along as well, especially if the pre and post tasks are used for monitoring
outage window control or load balancing.

Role Default Variables

1.3 .

Role default variables allow you to set default variables for included or dependent roles (see below). To create defaults,
simply add a defaults/main.yml file in your role directory. These variables will have the lowest priority of any variables
available, and can be easily overridden by any other variable, including inventory variables.

Role Dependencies

1.3 .

Role dependencies allow you to automatically pull in other roles when using a role. Role dependencies are stored in
the meta/main.yml file contained within the role directory. This file should contain a list of roles and parameters to
insert before the specified role, such as the following in an example roles/myapp/meta/main.yml:

dependencies:

- { role: common, some_parameter: 3 }
- { role: apache, apache_port: 80 }
- { role: postgres, dbname: blarg, other_parameter: 12 }

1.3. Playbooks 85

Ansible 2.2 Documentation, 2.4

Role dependencies can also be specified as a full path, just like top level roles:

dependencies:

- { role: '/path/to/common/roles/foo', x: 1 }

Role dependencies can also be installed from source control repos or tar files (via galaxy) using comma separated
format of path, an optional version (tag, commit, branch etc) and optional friendly role name (an attempt is made to
derive a role name from the repo name or archive filename). Both through the command line or via a requirements.yml
passed to ansible-galaxy.

Roles dependencies are always executed before the role that includes them, and are recursive. By default, roles can
also only be added as a dependency once - if another role also lists it as a dependency it will not be run again. This
behavior can be overridden by adding allow_duplicates: yes to the meta/main.yml file. For example, a role named
‘car’ could add a role named ‘wheel’ to its dependencies as follows:

dependencies:
- { role: wheel, n: 1 }
- { role: wheel, n: 2 }
- { role: wheel, n: 3 }
- { role: wheel, n: 4 }

And the meta/main.yml for wheel contained the following:

allow_duplicates: yes
dependencies:
- { role: tire }
- { role: brake }

The resulting order of execution would be as follows:

tire(n=1)
brake(n=1)
wheel(n=1)
tire(n=2)
brake(n=2)
wheel(n=2)
...
car

: Variable inheritance and scope are detailed in the Variables.

Embedding Modules and Plugins In Roles

This is an advanced topic that should not be relevant for most users.

If you write a custom module (see Developing Modules) or a plugin (see Developing Plugins), you may wish to
distribute it as part of a role. Generally speaking, Ansible as a project is very interested in taking high-quality modules
into ansible core for inclusion, so this shouldn’t be the norm, but it’s quite easy to do.

A good example for this is if you worked at a company called AcmeWidgets, and wrote an internal module that helped
configure your internal software, and you wanted other people in your organization to easily use this module – but you
didn’t want to tell everyone how to configure their Ansible library path.

86 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Alongside the ‘tasks’ and ‘handlers’ structure of a role, add a directory named ‘library’. In this ‘library’ directory,
then include the module directly inside of it.

Assuming you had this:

roles/
my_custom_modules/

library/
module1
module2

The module will be usable in the role itself, as well as any roles that are called after this role, as follows:

- hosts: webservers
roles:
- my_custom_modules
- some_other_role_using_my_custom_modules
- yet_another_role_using_my_custom_modules

This can also be used, with some limitations, to modify modules in Ansible’s core distribution, such as to use de-
velopment versions of modules before they are released in production releases. This is not always advisable as API
signatures may change in core components, however, and is not always guaranteed to work. It can be a handy way of
carrying a patch against a core module, however, should you have good reason for this. Naturally the project prefers
that contributions be directed back to github whenever possible via a pull request.

The same mechanism can be used to embed and distribute plugins in a role, using the same schema. For example, for
a filter plugin:

roles/
my_custom_filter/

filter_plugins
filter1
filter2

They can then be used in a template or a jinja template in any role called after ‘my_custom_filter’

Ansible Galaxy

Ansible Galaxy is a free site for finding, downloading, rating, and reviewing all kinds of community developed Ansible
roles and can be a great way to get a jumpstart on your automation projects.

You can sign up with social auth, and the download client ‘ansible-galaxy’ is included in Ansible 1.4.2 and later.

Read the “About” page on the Galaxy site for more information.

:

Ansible Galaxy How to share roles on galaxy, role management

YAML Syntax Learn about YAML syntax

Playbooks Review the basic Playbook language features

Best Practices Various tips about managing playbooks in the real world

Variables All about variables in playbooks

Conditionals Conditionals in playbooks

Loops Loops in playbooks

About Modules Learn about available modules

1.3. Playbooks 87

https://galaxy.ansible.com

Ansible 2.2 Documentation, 2.4

Developing Modules Learn how to extend Ansible by writing your own modules

GitHub Ansible examples Complete playbook files from the GitHub project source

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

Variables

Topics

• Variables

– What Makes A Valid Variable Name

– Variables Defined in Inventory

– Variables Defined in a Playbook

– Variables defined from included files and roles

– Using Variables: About Jinja2

– Jinja2 Filters

– Hey Wait, A YAML Gotcha

– Information discovered from systems: Facts

– Turning Off Facts

– Local Facts (Facts.d)

– Ansible version

– Fact Caching

– Registered Variables

– Accessing Complex Variable Data

– Magic Variables, and How To Access Information About Other Hosts

– Variable File Separation

– Passing Variables On The Command Line

– Variable Precedence: Where Should I Put A Variable?

– Variable Scopes

– Variable Examples

– Advanced Syntax

While automation exists to make it easier to make things repeatable, all of your systems are likely not exactly alike.

On some systems you may want to set some behavior or configuration that is slightly different from others.

Also, some of the observed behavior or state of remote systems might need to influence how you configure those
systems. (Such as you might need to find out the IP address of a system and even use it as a configuration value on
another system).

You might have some templates for configuration files that are mostly the same, but slightly different based on those
variables.

88 Chapter 1. About Ansible

https://github.com/ansible/ansible-examples
http://groups.google.com/group/ansible-project

Ansible 2.2 Documentation, 2.4

Variables in Ansible are how we deal with differences between systems.

To understand variables you’ll also want to dig into Conditionals and Loops. Useful things like the group_by module
and the when conditional can also be used with variables, and to help manage differences between systems.

It’s highly recommended that you consult the ansible-examples github repository to see a lot of examples of variables
put to use.

For best practices advice, refer to Variables and Vaults in the Best Practices chapter.

What Makes A Valid Variable Name

Before we start using variables it’s important to know what are valid variable names.

Variable names should be letters, numbers, and underscores. Variables should always start with a letter.

foo_port is a great variable. foo5 is fine too.

foo-port, foo port, foo.port and 12 are not valid variable names.

YAML also supports dictionaries which map keys to values. For instance:

foo:
field1: one
field2: two

You can then reference a specific field in the dictionary using either bracket notation or dot notation:

foo['field1']
foo.field1

These will both reference the same value (“one”). However, if you choose to use dot notation be aware that some keys
can cause problems because they collide with attributes and methods of python dictionaries. You should use bracket
notation instead of dot notation if you use keys which start and end with two underscores (Those are reserved for
special meanings in python) or are any of the known public attributes:

add, append, as_integer_ratio, bit_length, capitalize, center, clear, conjugate, copy,
count, decode, denominator, difference, difference_update, discard, encode, endswith,
expandtabs, extend, find, format, fromhex, fromkeys, get, has_key, hex, imag, index,
insert, intersection, intersection_update, isalnum, isalpha, isdecimal, isdigit,
isdisjoint, is_integer, islower, isnumeric, isspace, issubset, issuperset, istitle,
isupper, items, iteritems, iterkeys, itervalues, join, keys, ljust, lower, lstrip,
numerator, partition, pop, popitem, real, remove, replace, reverse, rfind, rindex, rjust,
rpartition, rsplit, rstrip, setdefault, sort, split, splitlines, startswith, strip,
swapcase, symmetric_difference, symmetric_difference_update, title, translate, union,
update, upper, values, viewitems, viewkeys, viewvalues, zfill.

Variables Defined in Inventory

We’ve actually already covered a lot about variables in another section, so far this shouldn’t be terribly new, but a bit
of a refresher.

Often you’ll want to set variables based on what groups a machine is in. For instance, maybe machines in Boston want
to use ‘boston.ntp.example.com’ as an NTP server.

See the Inventory document for multiple ways on how to define variables in inventory.

1.3. Playbooks 89

Ansible 2.2 Documentation, 2.4

Variables Defined in a Playbook

In a playbook, it’s possible to define variables directly inline like so:

- hosts: webservers
vars:
http_port: 80

This can be nice as it’s right there when you are reading the playbook.

Variables defined from included files and roles

It turns out we’ve already talked about variables in another place too.

As described in Playbook Roles and Include Statements, variables can also be included in the playbook via include
files, which may or may not be part of an “Ansible Role”. Usage of roles is preferred as it provides a nice organizational
system.

Using Variables: About Jinja2

It’s nice enough to know about how to define variables, but how do you use them?

Ansible allows you to reference variables in your playbooks using the Jinja2 templating system. While you can do a
lot of complex things in Jinja, only the basics are things you really need to learn at first.

For instance, in a simple template, you can do something like:

My amp goes to {{ max_amp_value }}

And that will provide the most basic form of variable substitution.

This is also valid directly in playbooks, and you’ll occasionally want to do things like:

template: src=foo.cfg.j2 dest={{ remote_install_path }}/foo.cfg

In the above example, we used a variable to help decide where to place a file.

Inside a template you automatically have access to all of the variables that are in scope for a host. Actually it’s more
than that – you can also read variables about other hosts. We’ll show how to do that in a bit.

: ansible allows Jinja2 loops and conditionals in templates, but in playbooks, we do not use them. Ansible playbooks
are pure machine-parseable YAML. This is a rather important feature as it means it is possible to code-generate pieces
of files, or to have other ecosystem tools read Ansible files. Not everyone will need this but it can unlock possibilities.

:

Templating (Jinja2) More information about Jinja2 templating

Jinja2 Filters

: These are infrequently utilized features. Use them if they fit a use case you have, but this is optional knowledge.

90 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Filters in Jinja2 are a way of transforming template expressions from one kind of data into another. Jinja2 ships with
many of these. See builtin filters in the official Jinja2 template documentation.

In addition to those, Ansible supplies many more. See the Filters document for a list of available filters and example
usage guide.

Hey Wait, A YAML Gotcha

YAML syntax requires that if you start a value with {{ foo }} you quote the whole line, since it wants to be sure
you aren’t trying to start a YAML dictionary. This is covered on the YAML Syntax page.

This won’t work:

- hosts: app_servers
vars:

app_path: {{ base_path }}/22

Do it like this and you’ll be fine:

- hosts: app_servers
vars:

app_path: "{{ base_path }}/22"

Information discovered from systems: Facts

There are other places where variables can come from, but these are a type of variable that are discovered, not set by
the user.

Facts are information derived from speaking with your remote systems.

An example of this might be the ip address of the remote host, or what the operating system is.

To see what information is available, try the following:

ansible hostname -m setup

This will return a ginormous amount of variable data, which may look like this, as taken from Ansible 1.4 on a Ubuntu
12.04 system

In the above the model of the first harddrive may be referenced in a template or playbook as:

{{ ansible_devices.sda.model }}

Similarly, the hostname as the system reports it is:

{{ ansible_nodename }}

and the unqualified hostname shows the string before the first period(.):

{{ ansible_hostname }}

Facts are frequently used in conditionals (see Conditionals) and also in templates.

Facts can be also used to create dynamic groups of hosts that match particular criteria, see the About Modules docu-
mentation on group_by for details, as well as in generalized conditional statements as discussed in the Conditionals
chapter.

1.3. Playbooks 91

http://jinja.pocoo.org/docs/templates/#builtin-filters

Ansible 2.2 Documentation, 2.4

Turning Off Facts

If you know you don’t need any fact data about your hosts, and know everything about your systems centrally, you
can turn off fact gathering. This has advantages in scaling Ansible in push mode with very large numbers of systems,
mainly, or if you are using Ansible on experimental platforms. In any play, just do this:

- hosts: whatever
gather_facts: no

Local Facts (Facts.d)

1.3 .

As discussed in the playbooks chapter, Ansible facts are a way of getting data about remote systems for use in playbook
variables.

Usually these are discovered automatically by the setup module in Ansible. Users can also write custom facts modules,
as described in the API guide. However, what if you want to have a simple way to provide system or user provided
data for use in Ansible variables, without writing a fact module?

For instance, what if you want users to be able to control some aspect about how their systems are managed? “Facts.d”
is one such mechanism.

: Perhaps “local facts” is a bit of a misnomer, it means “locally supplied user values” as opposed to “centrally supplied
user values”, or what facts are – “locally dynamically determined values”.

If a remotely managed system has an /etc/ansible/facts.d directory, any files in this directory ending in .
fact, can be JSON, INI, or executable files returning JSON, and these can supply local facts in Ansible. An alternate
directory can be specified using the fact_path play directive.

For instance assume a /etc/ansible/facts.d/preferences.fact:

[general]
asdf=1
bar=2

This will produce a hash variable fact named general with asdf and bar as members. To validate this, run the
following:

ansible <hostname> -m setup -a "filter=ansible_local"

And you will see the following fact added:

"ansible_local": {
"preferences": {

"general": {
"asdf" : "1",
"bar" : "2"

}
}

}

And this data can be accessed in a template/playbook as:

{{ ansible_local.preferences.general.asdf }}

92 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

The local namespace prevents any user supplied fact from overriding system facts or variables defined elsewhere in
the playbook.

: The key part in the key=value pairs will be converted into lowercase inside the ansible_local variable. Using the
example above, if the ini file contained XYZ=3 in the [general] section, then you should expect to access it as:
{{ ansible_local.preferences.general.xyz }} and not {{ ansible_local.preferences.
general.XYZ }}. This is because Ansible uses Python’s ConfigParser which passes all option names through the
optionxform method and this method’s default implementation converts option names to lower case.

If you have a playbook that is copying over a custom fact and then running it, making an explicit call to re-run the
setup module can allow that fact to be used during that particular play. Otherwise, it will be available in the next play
that gathers fact information. Here is an example of what that might look like:

- hosts: webservers
tasks:
- name: create directory for ansible custom facts

file: state=directory recurse=yes path=/etc/ansible/facts.d
- name: install custom impi fact

copy: src=ipmi.fact dest=/etc/ansible/facts.d
- name: re-read facts after adding custom fact

setup: filter=ansible_local

In this pattern however, you could also write a fact module as well, and may wish to consider this as an option.

Ansible version

1.8 .

To adapt playbook behavior to specific version of ansible, a variable ansible_version is available, with the following
structure:

"ansible_version": {
"full": "2.0.0.2",
"major": 2,
"minor": 0,
"revision": 0,
"string": "2.0.0.2"

}

Fact Caching

1.8 .

As shown elsewhere in the docs, it is possible for one server to reference variables about another, like so:

{{ hostvars['asdf.example.com']['ansible_os_family'] }}

With “Fact Caching” disabled, in order to do this, Ansible must have already talked to ‘asdf.example.com’ in the
current play, or another play up higher in the playbook. This is the default configuration of ansible.

To avoid this, Ansible 1.8 allows the ability to save facts between playbook runs, but this feature must be manually
enabled. Why might this be useful?

1.3. Playbooks 93

https://docs.python.org/2/library/configparser.html
https://docs.python.org/2/library/configparser.html#ConfigParser.RawConfigParser.optionxform

Ansible 2.2 Documentation, 2.4

Imagine, for instance, a very large infrastructure with thousands of hosts. Fact caching could be configured to run
nightly, but configuration of a small set of servers could run ad-hoc or periodically throughout the day. With fact-
caching enabled, it would not be necessary to “hit” all servers to reference variables and information about them.

With fact caching enabled, it is possible for machine in one group to reference variables about machines in the
other group, despite the fact that they have not been communicated with in the current execution of /usr/bin/ansible-
playbook.

To benefit from cached facts, you will want to change the gathering setting to smart or explicit or set
gather_facts to False in most plays.

Currently, Ansible ships with two persistent cache plugins: redis and jsonfile.

To configure fact caching using redis, enable it in ansible.cfg as follows:

[defaults]
gathering = smart
fact_caching = redis
fact_caching_timeout = 86400
seconds

To get redis up and running, perform the equivalent OS commands:

yum install redis
service redis start
pip install redis

Note that the Python redis library should be installed from pip, the version packaged in EPEL is too old for use by
Ansible.

In current embodiments, this feature is in beta-level state and the Redis plugin does not support port or password
configuration, this is expected to change in the near future.

To configure fact caching using jsonfile, enable it in ansible.cfg as follows:

[defaults]
gathering = smart
fact_caching = jsonfile
fact_caching_connection = /path/to/cachedir
fact_caching_timeout = 86400
seconds

fact_caching_connection is a local filesystem path to a writeable directory (ansible will attempt to create the
directory if one does not exist).

fact_caching_timeout is the number of seconds to cache the recorded facts.

Registered Variables

Another major use of variables is running a command and using the result of that command to save the result into a
variable. Results will vary from module to module. Use of -v when executing playbooks will show possible values
for the results.

The value of a task being executed in ansible can be saved in a variable and used later. See some examples of this in
the Conditionals chapter.

While it’s mentioned elsewhere in that document too, here’s a quick syntax example:

94 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- hosts: web_servers

tasks:

- shell: /usr/bin/foo
register: foo_result
ignore_errors: True

- shell: /usr/bin/bar
when: foo_result.rc == 5

Registered variables are valid on the host the remainder of the playbook run, which is the same as the lifetime of
“facts” in Ansible. Effectively registered variables are just like facts.

When using register with a loop the data structure placed in the variable during a loop, will contain a results
attribute, that is a list of all responses from the module. For a more in-depth example of how this works, see the Loops
section on using register with a loop.

: If a task fails or is skipped, the variable still is registered with a failure or skipped status, the only way to avoid
registering a variable is using tags.

Accessing Complex Variable Data

We already talked about facts a little higher up in the documentation.

Some provided facts, like networking information, are made available as nested data structures. To access them a
simple {{ foo }} is not sufficient, but it is still easy to do. Here’s how we get an IP address:

{{ ansible_eth0["ipv4"]["address"] }}

OR alternatively:

{{ ansible_eth0.ipv4.address }}

Similarly, this is how we access the first element of an array:

{{ foo[0] }}

Magic Variables, and How To Access Information About Other Hosts

Even if you didn’t define them yourself, Ansible provides a few variables for you automatically. The most important
of these are hostvars, group_names, and groups. Users should not use these names themselves as they are
reserved. environment is also reserved.

hostvars lets you ask about the variables of another host, including facts that have been gathered about that host.
If, at this point, you haven’t talked to that host yet in any play in the playbook or set of playbooks, you can still get the
variables, but you will not be able to see the facts.

If your database server wants to use the value of a ‘fact’ from another node, or an inventory variable assigned to
another node, it’s easy to do so within a template or even an action line:

{{ hostvars['test.example.com']['ansible_distribution'] }}

1.3. Playbooks 95

Ansible 2.2 Documentation, 2.4

Additionally, group_names is a list (array) of all the groups the current host is in. This can be used in templates
using Jinja2 syntax to make template source files that vary based on the group membership (or role) of the host

{% if 'webserver' in group_names %}
some part of a configuration file that only applies to webservers

{% endif %}

groups is a list of all the groups (and hosts) in the inventory. This can be used to enumerate all hosts within a group.
For example:

{% for host in groups['app_servers'] %}
something that applies to all app servers.

{% endfor %}

A frequently used idiom is walking a group to find all IP addresses in that group

{% for host in groups['app_servers'] %}
{{ hostvars[host]['ansible_eth0']['ipv4']['address'] }}

{% endfor %}

An example of this could include pointing a frontend proxy server to all of the app servers, setting up the correct
firewall rules between servers, etc. You need to make sure that the facts of those hosts have been populated before
though, for example by running a play against them if the facts have not been cached recently (fact caching was added
in Ansible 1.8).

Additionally, inventory_hostname is the name of the hostname as configured in Ansible’s inventory host file.
This can be useful for when you don’t want to rely on the discovered hostname ansible_hostname or for other
mysterious reasons. If you have a long FQDN, inventory_hostname_short also contains the part up to the
first period, without the rest of the domain.

play_hosts has been deprecated in 2.2, it was the same as the new ansible_play_batch variable.

2.2 .

ansible_play_hosts is the full list of all hosts still active in the current play.

2.2 .

ansible_play_batch is available as a list of hostnames that are in scope for the current ‘batch’ of the play.
The batch size is defined by serial, when not set it is equivalent to the whole play (making it the same as
ansible_play_hosts).

2.3 .

ansible_playbook_python is the path to the python executable used to invoke the Ansible command line tool.

These vars may be useful for filling out templates with multiple hostnames or for injecting the list into the rules for a
load balancer.

Don’t worry about any of this unless you think you need it. You’ll know when you do.

Also available, inventory_dir is the pathname of the directory holding Ansible’s inventory host file,
inventory_file is the pathname and the filename pointing to the Ansible’s inventory host file.

playbook_dir contains the playbook base directory.

We then have role_path which will return the current role’s pathname (since 1.8). This will only work inside a
role.

And finally, ansible_check_mode (added in version 2.1), a boolean magic variable which will be set to True if
you run Ansible with --check.

96 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Variable File Separation

It’s a great idea to keep your playbooks under source control, but you may wish to make the playbook source public
while keeping certain important variables private. Similarly, sometimes you may just want to keep certain information
in different files, away from the main playbook.

You can do this by using an external variables file, or files, just like this:

- hosts: all
remote_user: root
vars:
favcolor: blue

vars_files:
- /vars/external_vars.yml

tasks:

- name: this is just a placeholder
command: /bin/echo foo

This removes the risk of sharing sensitive data with others when sharing your playbook source with them.

The contents of each variables file is a simple YAML dictionary, like this:

in the above example, this would be vars/external_vars.yml
somevar: somevalue
password: magic

: It’s also possible to keep per-host and per-group variables in very similar files, this is covered in Splitting Out Host
and Group Specific Data.

Passing Variables On The Command Line

In addition to vars_prompt and vars_files, it is possible to send variables over the Ansible command line.
This is particularly useful when writing a generic release playbook where you may want to pass in the version of the
application to deploy:

ansible-playbook release.yml --extra-vars "version=1.23.45 other_variable=foo"

This is useful, for, among other things, setting the hosts group or the user for the playbook.

Example:

- hosts: '{{ hosts }}'
remote_user: '{{ user }}'

tasks:
- ...

ansible-playbook release.yml --extra-vars "hosts=vipers user=starbuck"

1.3. Playbooks 97

Ansible 2.2 Documentation, 2.4

As of Ansible 1.2, you can also pass in extra vars as quoted JSON, like so:

--extra-vars '{"pacman":"mrs","ghosts":["inky","pinky","clyde","sue"]}'

The key=value form is obviously simpler, but it’s there if you need it!

: Values passed in using the key=value syntax are interpreted as strings. Use the JSON format if you need to pass
in anything that shouldn’t be a string (Booleans, integers, floats, lists etc).

As of Ansible 1.3, extra vars can be loaded from a JSON file with the @ syntax:

--extra-vars "@some_file.json"

Also as of Ansible 1.3, extra vars can be formatted as YAML, either on the command line or in a file as above.

Variable Precedence: Where Should I Put A Variable?

A lot of folks may ask about how variables override another. Ultimately it’s Ansible’s philosophy that it’s better you
know where to put a variable, and then you have to think about it a lot less.

Avoid defining the variable “x” in 47 places and then ask the question “which x gets used”. Why? Because that’s not
Ansible’s Zen philosophy of doing things.

There is only one Empire State Building. One Mona Lisa, etc. Figure out where to define a variable, and don’t make
it complicated.

However, let’s go ahead and get precedence out of the way! It exists. It’s a real thing, and you might have a use for it.

If multiple variables of the same name are defined in different places, they get overwritten in a certain order.

: Ansible 2.0 has deprecated the “ssh” from ansible_ssh_user, ansible_ssh_host, and
ansible_ssh_port to become ansible_user, ansible_host, and ansible_port. If you are using
a version of Ansible prior to 2.0, you should continue using the older style variables (ansible_ssh_*). These
shorter variables are ignored, without warning, in older versions of Ansible.

In 1.x, the precedence is as follows (with the last listed variables winning prioritization):

• “role defaults”, which lose in priority to everything and are the most easily overridden

• variables defined in inventory

• facts discovered about a system

• “most everything else” (command line switches, vars in play, included vars, role vars, etc.)

• connection variables (ansible_user, etc.)

• extra vars (-e in the command line) always win

: In versions prior to 1.5.4, facts discovered about a system were in the “most everything else” category above.

In 2.x, we have made the order of precedence more specific (with the last listed variables winning prioritization):

• role defaults1

1 Tasks in each role will see their own role’s defaults. Tasks defined outside of a role will see the last role’s defaults.

98 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

• inventory file or script group vars2

• inventory group_vars/all

• playbook group_vars/all

• inventory group_vars/*

• playbook group_vars/*

• inventory file or script host vars2

• inventory host_vars/*

• playbook host_vars/*

• host facts

• play vars

• play vars_prompt

• play vars_files

• role vars (defined in role/vars/main.yml)

• block vars (only for tasks in block)

• task vars (only for the task)

• role (and include_role) params

• include params

• include_vars

• set_facts / registered vars

• extra vars (always win precedence)

Basically, anything that goes into “role defaults” (the defaults folder inside the role) is the most malleable and easily
overridden. Anything in the vars directory of the role overrides previous versions of that variable in namespace. The
idea here to follow is that the more explicit you get in scope, the more precedence it takes with command line -e extra
vars always winning. Host and/or inventory variables can win over role defaults, but not explicit includes like the vars
directory or an include_vars task.

: Within any section, redefining a var will overwrite the previous instance. If multiple groups have the same variable,
the last one loaded wins. If you define a variable twice in a play’s vars: section, the 2nd one wins.

: the previous describes the default config hash_behavior=replace, switch to ‘merge’ to only partially overwrite.

Another important thing to consider (for all versions) is that connection variables override config, command line and
play/role/task specific options and directives. For example:

ansible -u lola myhost

This will still connect as ramon because ansible_ssh_user is set to ramon in inventory for myhost. For
plays/tasks this is also true for remote_user:

2 Variables defined in inventory file or provided by dynamic inventory.

1.3. Playbooks 99

Ansible 2.2 Documentation, 2.4

- hosts: myhost
tasks:
- command: i'll connect as ramon still

remote_user: lola

This is done so host-specific settings can override the general settings. These variables are normally defined per host
or group in inventory, but they behave like other variables. If you want to override the remote user globally (even over
inventory) you can use extra vars:

ansible... -e "ansible_user=<user>"

You can also override as a normal variable in a play:

- hosts: all
vars:
ansible_user: lola

tasks:
- command: i'll connect as lola!

Variable Scopes

Ansible has 3 main scopes:

• Global: this is set by config, environment variables and the command line

• Play: each play and contained structures, vars entries (vars; vars_files; vars_prompt), role defaults and vars.

• Host: variables directly associated to a host, like inventory, include_vars, facts or registered task outputs

Variable Examples

That seems a little theoretical. Let’s show some examples and where you would choose to put what based on the kind
of control you might want over values.

First off, group variables are super powerful.

Site wide defaults should be defined as a group_vars/all setting. Group variables are generally placed alongside
your inventory file. They can also be returned by a dynamic inventory script (see Dynamic Inventory) or defined in
things like Ansible Tower from the UI or API:

file: /etc/ansible/group_vars/all
this is the site wide default
ntp_server: default-time.example.com

Regional information might be defined in a group_vars/region variable. If this group is a child of the all
group (which it is, because all groups are), it will override the group that is higher up and more general:

file: /etc/ansible/group_vars/boston
ntp_server: boston-time.example.com

If for some crazy reason we wanted to tell just a specific host to use a specific NTP server, it would then override the
group variable!:

100 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

file: /etc/ansible/host_vars/xyz.boston.example.com
ntp_server: override.example.com

So that covers inventory and what you would normally set there. It’s a great place for things that deal with geography
or behavior. Since groups are frequently the entity that maps roles onto hosts, it is sometimes a shortcut to set variables
on the group instead of defining them on a role. You could go either way.

Remember: Child groups override parent groups, and hosts always override their groups.

Next up: learning about role variable precedence.

We’ll pretty much assume you are using roles at this point. You should be using roles for sure. Roles are great. You
are using roles aren’t you? Hint hint.

Ok, so if you are writing a redistributable role with reasonable defaults, put those in the roles/x/defaults/
main.yml file. This means the role will bring along a default value but ANYTHING in Ansible will override it. It’s
just a default. That’s why it says “defaults” :) See Playbook Roles and Include Statements for more info about this:

file: roles/x/defaults/main.yml
if not overridden in inventory or as a parameter, this is the value that will be
→˓used
http_port: 80

If you are writing a role and want to ensure the value in the role is absolutely used in that role, and is not going to
be overridden by inventory, you should put it in roles/x/vars/main.yml like so, and inventory values cannot
override it. -e however, still will:

file: roles/x/vars/main.yml
this will absolutely be used in this role
http_port: 80

So the above is a great way to plug in constants about the role that are always true. If you are not sharing your role
with others, app specific behaviors like ports is fine to put in here. But if you are sharing roles with others, putting
variables in here might be bad. Nobody will be able to override them with inventory, but they still can by passing a
parameter to the role.

Parameterized roles are useful.

If you are using a role and want to override a default, pass it as a parameter to the role like so:

roles:
- { role: apache, http_port: 8080 }

This makes it clear to the playbook reader that you’ve made a conscious choice to override some default in the role, or
pass in some configuration that the role can’t assume by itself. It also allows you to pass something site-specific that
isn’t really part of the role you are sharing with others.

This can often be used for things that might apply to some hosts multiple times, like so:

roles:
- { role: app_user, name: Ian }
- { role: app_user, name: Terry }
- { role: app_user, name: Graham }
- { role: app_user, name: John }

1.3. Playbooks 101

Ansible 2.2 Documentation, 2.4

That’s a bit arbitrary, but you can see how the same role was invoked multiple times. In that example it’s quite likely
there was no default for ‘name’ supplied at all. Ansible can yell at you when variables aren’t defined – it’s the default
behavior in fact.

So that’s a bit about roles.

There are a few bonus things that go on with roles.

Generally speaking, variables set in one role are available to others. This means if you have a roles/common/
vars/main.yml you can set variables in there and make use of them in other roles and elsewhere in your playbook:

roles:
- { role: common_settings }
- { role: something, foo: 12 }
- { role: something_else }

: There are some protections in place to avoid the need to namespace variables. In the above, variables defined
in common_settings are most definitely available to ‘something’ and ‘something_else’ tasks, but if “something’s”
guaranteed to have foo set at 12, even if somewhere deep in common settings it set foo to 20.

So, that’s precedence, explained in a more direct way. Don’t worry about precedence, just think about if your role is
defining a variable that is a default, or a “live” variable you definitely want to use. Inventory lies in precedence right
in the middle, and if you want to forcibly override something, use -e.

If you found that a little hard to understand, take a look at the ansible-examples repo on our github for a bit more about
how all of these things can work together.

Advanced Syntax

For information about advanced YAML syntax used to declare variables and have more control over the data placed
in YAML files used by Ansible, see Advanced Syntax.

:

Playbooks An introduction to playbooks

Conditionals Conditional statements in playbooks

Filters Jinja2 filters and their uses

Loops Looping in playbooks

Playbook Roles and Include Statements Playbook organization by roles

Best Practices Best practices in playbooks

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Templating (Jinja2)

As already referenced in the variables section, Ansible uses Jinja2 templating to enable dynamic expressions and
access to variables. Ansible greatly expands the number of filters and tests available, as well as adding a new plugin
type: lookups.

Please note that all templating happens on the Ansible controller before the task is sent and executed on the target
machine. This is done to minimize the requirements on the target (jinja2 is only required on the controller) and to be

102 Chapter 1. About Ansible

https://github.com/ansible/ansible-examples
http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

able to pass the minimal information needed for the task, so the target machine does not need a copy of all the data
that the controller has access to.

Topics

• Templating (Jinja2)

Filters

Topics

• Filters

– Filters For Formatting Data

– Forcing Variables To Be Defined

– Defaulting Undefined Variables

– Omitting Parameters

– List Filters

– Set Theory Filters

– Random Number Filter

– Shuffle Filter

– Math

– JSON Query Filter

– IP address filter

– Hashing filters

– Combining hashes/dictionaries

– Extracting values from containers

– Comment Filter

– Other Useful Filters

– Combination Filters

– Debugging Filters

Filters in Ansible are from Jinja2, and are used for transforming data inside a template expression. Jinja2 ships with
many filters. See builtin filters in the official Jinja2 template documentation.

Take into account that templating happens on the the Ansible controller, not on the task’s target host, so filters also
execute on the controller as they manipulate local data.

In addition the ones provided by Jinja2, Ansible ships with it’s own and allows users to add their own custom filters.

1.3. Playbooks 103

http://jinja.pocoo.org/docs/templates/#builtin-filters

Ansible 2.2 Documentation, 2.4

Filters For Formatting Data

The following filters will take a data structure in a template and render it in a slightly different format. These are
occasionally useful for debugging:

{{ some_variable | to_json }}
{{ some_variable | to_yaml }}

For human readable output, you can use:

{{ some_variable | to_nice_json }}
{{ some_variable | to_nice_yaml }}

It’s also possible to change the indentation of both (new in version 2.2):

{{ some_variable | to_nice_json(indent=2) }}
{{ some_variable | to_nice_yaml(indent=8) }}

Alternatively, you may be reading in some already formatted data:

{{ some_variable | from_json }}
{{ some_variable | from_yaml }}

for example:

tasks:
- shell: cat /some/path/to/file.json
register: result

- set_fact: myvar="{{ result.stdout | from_json }}"

Forcing Variables To Be Defined

The default behavior from ansible and ansible.cfg is to fail if variables are undefined, but you can turn this off.

This allows an explicit check with this feature off:

{{ variable | mandatory }}

The variable value will be used as is, but the template evaluation will raise an error if it is undefined.

Defaulting Undefined Variables

Jinja2 provides a useful ‘default’ filter, that is often a better approach to failing if a variable is not defined:

{{ some_variable | default(5) }}

In the above example, if the variable ‘some_variable’ is not defined, the value used will be 5, rather than an error being
raised.

Omitting Parameters

As of Ansible 1.8, it is possible to use the default filter to omit module parameters using the special omit variable:

104 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- name: touch files with an optional mode
file: dest={{item.path}} state=touch mode={{item.mode|default(omit)}}
with_items:
- path: /tmp/foo
- path: /tmp/bar
- path: /tmp/baz

mode: "0444"

For the first two files in the list, the default mode will be determined by the umask of the system as the mode=
parameter will not be sent to the file module while the final file will receive the mode=0444 option.

: If you are “chaining” additional filters after the default(omit) filter, you should instead do something like this: “{{
foo | default(None) | some_filter or omit }}”. In this example, the default None (python null) value will cause the later
filters to fail, which will trigger the or omit portion of the logic. Using omit in this manner is very specific to the later
filters you’re chaining though, so be prepared for some trial and error if you do this.

List Filters

These filters all operate on list variables.

1.8 .

To get the minimum value from list of numbers:

{{ list1 | min }}

To get the maximum value from a list of numbers:

{{ [3, 4, 2] | max }}

Set Theory Filters

All these functions return a unique set from sets or lists.

1.4 .

To get a unique set from a list:

{{ list1 | unique }}

To get a union of two lists:

{{ list1 | union(list2) }}

To get the intersection of 2 lists (unique list of all items in both):

{{ list1 | intersect(list2) }}

To get the difference of 2 lists (items in 1 that don’t exist in 2):

{{ list1 | difference(list2) }}

To get the symmetric difference of 2 lists (items exclusive to each list):

1.3. Playbooks 105

Ansible 2.2 Documentation, 2.4

{{ list1 | symmetric_difference(list2) }}

Random Number Filter

1.6 .

This filter can be used similar to the default jinja2 random filter (returning a random item from a sequence of items),
but can also generate a random number based on a range.

To get a random item from a list:

"{{ ['a','b','c']|random }}"
=> 'c'

To get a random number from 0 to supplied end:

"{{ 59 |random}} * * * * root /script/from/cron"
=> '21 * * * * root /script/from/cron'

Get a random number from 0 to 100 but in steps of 10:

{{ 100 |random(step=10) }}
=> 70

Get a random number from 1 to 100 but in steps of 10:

{{ 100 |random(1, 10) }}
=> 31
{{ 100 |random(start=1, step=10) }}
=> 51

As of Ansible version 2.3, it’s also possible to initialize the random number generator from a seed. This way, you can
create random-but-idempotent numbers:

"{{ 59 |random(seed=inventory_hostname) }} * * * * root /script/from/cron"

Shuffle Filter

1.8 .

This filter will randomize an existing list, giving a different order every invocation.

To get a random list from an existing list:

{{ ['a','b','c']|shuffle }}
=> ['c','a','b']
{{ ['a','b','c']|shuffle }}
=> ['b','c','a']

As of Ansible version 2.3, it’s also possible to shuffle a list idempotent. All you need is a seed.:

{{ ['a','b','c']|shuffle(seed=inventory_hostname) }}
=> ['b','a','c']

note that when used with a non ‘listable’ item it is a noop, otherwise it always returns a list

106 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Math

1.9 .

Get the logarithm (default is e):

{{ myvar | log }}

Get the base 10 logarithm:

{{ myvar | log(10) }}

Give me the power of 2! (or 5):

{{ myvar | pow(2) }}
{{ myvar | pow(5) }}

Square root, or the 5th:

{{ myvar | root }}
{{ myvar | root(5) }}

Note that jinja2 already provides some like abs() and round().

JSON Query Filter

2.2 .

Sometimes you end up with a complex data structure in JSON format and you need to extract only a small set of
data within it. The json_query filter lets you query a complex JSON structure and iterate over it using a with_items
structure.

: This filter is built upon jmespath, and you can use the same syntax. For examples, see jmespath examples.

Now, let’s take the following data structure:

domain_definition:
domain:

cluster:
- name: "cluster1"
- name: "cluster2"

server:
- name: "server11"
cluster: "cluster1"
port: "8080"

- name: "server12"
cluster: "cluster1"
port: "8090"

- name: "server21"
cluster: "cluster2"
port: "9080"

- name: "server22"
cluster: "cluster2"
port: "9090"

library:
- name: "lib1"

1.3. Playbooks 107

http://jmespath.org/examples.html

Ansible 2.2 Documentation, 2.4

target: "cluster1"
- name: "lib2"
target: "cluster2"

To extract all clusters from this structure, you can use the following query:

- name: "Display all cluster names"
debug: var=item
with_items: "{{domain_definition|json_query('domain.cluster[*].name')}}"

Same thing for all server names:

- name: "Display all server names"
debug: var=item
with_items: "{{domain_definition|json_query('domain.server[*].name')}}"

This example shows ports from cluster1:

- name: "Display all server names from cluster1"
debug: var=item
with_items: "{{domain_definition|json_query(server_name_cluster1_query)}}"
vars:
server_name_cluster1_query: "domain.server[?cluster=='cluster1'].port"

: You can use a variable to make the query more readable.

In this example, we get a hash map with all ports and names of a cluster:

- name: "Display all server ports and names from cluster1"
debug: var=item
with_items: "{{domain_definition|json_query(server_name_cluster1_query)}}"
vars:
server_name_cluster1_query: "domain.server[?cluster=='cluster2'].{name: name,

→˓port: port}"

IP address filter

1.9 .

To test if a string is a valid IP address:

{{ myvar | ipaddr }}

You can also require a specific IP protocol version:

{{ myvar | ipv4 }}
{{ myvar | ipv6 }}

IP address filter can also be used to extract specific information from an IP address. For example, to get the IP address
itself from a CIDR, you can use:

{{ '192.0.2.1/24' | ipaddr('address') }}

More information about ipaddr filter and complete usage guide can be found in playbooks_filters_ipaddr.

108 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Hashing filters

1.9 .

To get the sha1 hash of a string:

{{ 'test1'|hash('sha1') }}

To get the md5 hash of a string:

{{ 'test1'|hash('md5') }}

Get a string checksum:

{{ 'test2'|checksum }}

Other hashes (platform dependent):

{{ 'test2'|hash('blowfish') }}

To get a sha512 password hash (random salt):

{{ 'passwordsaresecret'|password_hash('sha512') }}

To get a sha256 password hash with a specific salt:

{{ 'secretpassword'|password_hash('sha256', 'mysecretsalt') }}

Hash types available depend on the master system running ansible, ‘hash’ depends on hashlib password_hash depends
on crypt.

Combining hashes/dictionaries

2.0 .

The combine filter allows hashes to be merged. For example, the following would override keys in one hash:

{{ {'a':1, 'b':2}|combine({'b':3}) }}

The resulting hash would be:

{'a':1, 'b':3}

The filter also accepts an optional recursive=True parameter to not only override keys in the first hash, but also recurse
into nested hashes and merge their keys too

{{ {'a':{'foo':1, 'bar':2}, 'b':2}|combine({'a':{'bar':3, 'baz':4}}, recursive=True) }
→˓}

This would result in:

{'a':{'foo':1, 'bar':3, 'baz':4}, 'b':2}

The filter can also take multiple arguments to merge:

{{ a|combine(b, c, d) }}

1.3. Playbooks 109

Ansible 2.2 Documentation, 2.4

In this case, keys in d would override those in c, which would override those in b, and so on.

This behaviour does not depend on the value of the hash_behaviour setting in ansible.cfg.

Extracting values from containers

2.1 .

The extract filter is used to map from a list of indices to a list of values from a container (hash or array):

{{ [0,2]|map('extract', ['x','y','z'])|list }}
{{ ['x','y']|map('extract', {'x': 42, 'y': 31})|list }}

The results of the above expressions would be:

['x', 'z']
[42, 31]

The filter can take another argument:

{{ groups['x']|map('extract', hostvars, 'ec2_ip_address')|list }}

This takes the list of hosts in group ‘x’, looks them up in hostvars, and then looks up the ec2_ip_address of the result.
The final result is a list of IP addresses for the hosts in group ‘x’.

The third argument to the filter can also be a list, for a recursive lookup inside the container:

{{ ['a']|map('extract', b, ['x','y'])|list }}

This would return a list containing the value of b[’a’][’x’][’y’].

Comment Filter

2.0 .

The comment filter allows to decorate the text with a chosen comment style. For example the following:

{{ "Plain style (default)" | comment }}

will produce this output:

#
Plain style (default)
#

Similar way can be applied style for C (//...), C block (/*...*/), Erlang (%...) and XML (<!--...-->):

{{ "C style" | comment('c') }}
{{ "C block style" | comment('cblock') }}
{{ "Erlang style" | comment('erlang') }}
{{ "XML style" | comment('xml') }}

It is also possible to fully customize the comment style:

{{ "Custom style" | comment('plain', prefix='#######\n#', postfix='#\n#######\n ##
→˓#\n #') }}

110 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

That will create the following output:

#######
#
Custom style
#
#######

###
#

The filter can also be applied to any Ansible variable. For example to make the output of the ansible_managed
variable more readable, we can change the definition in the ansible.cfg file to this:

[defaults]

ansible_managed = This file is managed by Ansible.%n
template: {file}
date: %Y-%m-%d %H:%M:%S
user: {uid}
host: {host}

and then use the variable with the comment filter:

{{ ansible_managed | comment }}

which will produce this output:

#
This file is managed by Ansible.
#
template: /home/ansible/env/dev/ansible_managed/roles/role1/templates/test.j2
date: 2015-09-10 11:02:58
user: ansible
host: myhost
#

Other Useful Filters

To add quotes for shell usage:

- shell: echo {{ string_value | quote }}

To use one value on true and another on false (new in version 1.9):

{{ (name == "John") | ternary('Mr','Ms') }}

To concatenate a list into a string:

{{ list | join(" ") }}

To get the last name of a file path, like ‘foo.txt’ out of ‘/etc/asdf/foo.txt’:

{{ path | basename }}

To get the last name of a windows style file path (new in version 2.0):

1.3. Playbooks 111

Ansible 2.2 Documentation, 2.4

{{ path | win_basename }}

To separate the windows drive letter from the rest of a file path (new in version 2.0):

{{ path | win_splitdrive }}

To get only the windows drive letter:

{{ path | win_splitdrive | first }}

To get the rest of the path without the drive letter:

{{ path | win_splitdrive | last }}

To get the directory from a path:

{{ path | dirname }}

To get the directory from a windows path (new version 2.0):

{{ path | win_dirname }}

To expand a path containing a tilde (~) character (new in version 1.5):

{{ path | expanduser }}

To get the real path of a link (new in version 1.8):

{{ path | realpath }}

To get the relative path of a link, from a start point (new in version 1.7):

{{ path | relpath('/etc') }}

To get the root and extension of a path or filename (new in version 2.0):

with path == 'nginx.conf' the return would be ('nginx', '.conf')
{{ path | splitext }}

To work with Base64 encoded strings:

{{ encoded | b64decode }}
{{ decoded | b64encode }}

To create a UUID from a string (new in version 1.9):

{{ hostname | to_uuid }}

To cast values as certain types, such as when you input a string as “True” from a vars_prompt and the system doesn’t
know it is a boolean value:

- debug: msg=test
when: some_string_value | bool

1.6 .

To replace text in a string with regex, use the “regex_replace” filter:

112 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

convert "ansible" to "able"
{{ 'ansible' | regex_replace('^a.*i(.*)$', 'a\\1') }}

convert "foobar" to "bar"
{{ 'foobar' | regex_replace('^f.*o(.*)$', '\\1') }}

convert "localhost:80" to "localhost, 80" using named groups
{{ 'localhost:80' | regex_replace('^(?P<host>.+):(?P<port>\\d+)$', '\\g<host>, \\g
→˓<port>') }}

: Prior to ansible 2.0, if “regex_replace” filter was used with variables inside YAML arguments (as opposed to simpler
‘key=value’ arguments), then you needed to escape backreferences (e.g. \\1) with 4 backslashes (\\\\) instead of
2 (\\).

2.0 .

To escape special characters within a regex, use the “regex_escape” filter:

convert '^f.*o(.*)$' to '\^f\.*o\(\.*\)\$'
{{ '^f.*o(.*)$' | regex_escape() }}

To make use of one attribute from each item in a list of complex variables, use the “map” filter (see the Jinja2 map()
docs for more):

get a comma-separated list of the mount points (e.g. "/,/mnt/stuff") on a host
{{ ansible_mounts|map(attribute='mount')|join(',') }}

To get date object from string use the to_datetime filter, (new in version in 2.2):

get amount of seconds between two dates, default date format is %Y-%d-%m %H:%M:%S
→˓but you can pass your own one
{{ (("2016-08-04 20:00:12"|to_datetime) - ("2015-10-06"|to_datetime('%Y-%d-%m'))).
→˓seconds }}

Combination Filters

2.3 .

This set of filters returns a list of combined lists. To get permutations of a list:

- name: give me largest permutations (order matters)
debug: msg="{{ [1,2,3,4,5]|permutations|list }}"

- name: give me permutations of sets of 3
debug: msg="{{ [1,2,3,4,5]|permutations(3)|list }}"

Combinations always require a set size:

- name: give me combinations for sets of 2
debug: msg="{{ [1,2,3,4,5]|combinations(2)|list }}"

To get a list combining the elements of other lists use zip:

1.3. Playbooks 113

http://jinja.pocoo.org/docs/dev/templates/#map
http://jinja.pocoo.org/docs/dev/templates/#map

Ansible 2.2 Documentation, 2.4

- name: give me list combo of 2 lists
debug: msg="{{ [1,2,3,4,5]|zip(['a','b','c','d','e','f'])|list }}"

- name: give me shortest combo of 2 lists
debug: msg="{{ [1,2,3]|zip(['a','b','c','d','e','f'])|list }}"

To always exhaust all list use zip_longest:

- name: give me longest combo of 3 lists , fill with X
debug: msg="{{ [1,2,3]|zip_longest(['a','b','c','d','e','f'], [21, 22, 23],

→˓fillvalue='X')|list }}"

2.4 .

To format a date using a string (like with the shell date command), use the “strftime” filter:

Display year-month-day
{{ '%Y-%m-%d' | strftime }}

Display hour:min:sec
{{ '%H:%M:%S' | strftime }}

Use ansible_date_time.epoch fact
{{ '%Y-%m-%d %H:%M:%S' | strftime(ansible_date_time.epoch) }}

Use arbitrary epoch value
{{ '%Y-%m-%d' | strftime(0) }} # => 1970-01-01
{{ '%Y-%m-%d' | strftime(1441357287) }} # => 2015-09-04

: To get all string possibilities, check https://docs.python.org/2/library/time.html#time.strftime

Debugging Filters

2.3 .

Use the type_debug filter to display the underlying Python type of a variable. This can be useful in debugging in
situations where you may need to know the exact type of a variable:

{{ myvar | type_debug }}

A few useful filters are typically added with each new Ansible release. The development documentation shows how to
extend Ansible filters by writing your own as plugins, though in general, we encourage new ones to be added to core
so everyone can make use of them.

:

Playbooks An introduction to playbooks

Conditionals Conditional statements in playbooks

Variables All about variables

Loops Looping in playbooks

Playbook Roles and Include Statements Playbook organization by roles

Best Practices Best practices in playbooks

114 Chapter 1. About Ansible

https://docs.python.org/2/library/time.html#time.strftime

Ansible 2.2 Documentation, 2.4

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Tests

Topics

• Tests

– Testing strings

– Version Comparison

– Group theory tests

– Testing paths

– Task results

Tests in Jinja2 are a way of evaluating template expressions and returning True or False. Jinja2 ships with many of
these. See builtin tests in the official Jinja2 template documentation. Tests are very similar to filters and are used
mostly the same way, but they can also be used in list processing filters, like C(map()) and C(select()) to choose items
in the list.

Like all templating, tests always execute on the Ansible controller, not on the target of a task, as they test local data.

In addition to those Jinja2 tests, Ansible supplies a few more and users can easily create their own.

Testing strings

To match strings against a substring or a regex, use the “match” or “search” filter:

vars:
url: "http://example.com/users/foo/resources/bar"

tasks:
- debug: "msg='matched pattern 1'"

when: url | match("http://example.com/users/.*/resources/.*")

- debug: "msg='matched pattern 2'"
when: url | search("/users/.*/resources/.*")

- debug: "msg='matched pattern 3'"
when: url | search("/users/")

‘match’ requires a complete match in the string, while ‘search’ only requires matching a subset of the string.

Version Comparison

1.6 .

To compare a version number, such as checking if the ansible_distribution_version version is greater
than or equal to ‘12.04’, you can use the version_compare filter.

The version_compare filter can also be used to evaluate the ansible_distribution_version:

1.3. Playbooks 115

http://groups.google.com/group/ansible-devel
http://irc.freenode.net
http://jinja.pocoo.org/docs/templates/#builtin-tests

Ansible 2.2 Documentation, 2.4

{{ ansible_distribution_version | version_compare('12.04', '>=') }}

If ansible_distribution_version is greater than or equal to 12, this filter returns True, otherwise False.

The version_compare filter accepts the following operators:

<, lt, <=, le, >, gt, >=, ge, ==, =, eq, !=, <>, ne

This test also accepts a 3rd parameter, strict which defines if strict version parsing should be used. The default is
False, but this setting as True uses more strict version parsing:

{{ sample_version_var | version_compare('1.0', operator='lt', strict=True) }}

Group theory tests

2.1 .

To see if a list includes or is included by another list, you can use ‘issubset’ and ‘issuperset’:

vars:
a: [1,2,3,4,5]
b: [2,3]

tasks:
- debug: msg="A includes B"

when: a|issuperset(b)

- debug: msg="B is included in A"
when: b|issubset(a)

2.4 .

You can use any and all to check if any or all elements in a list are true or not:

vars:
mylist:

- 1
- 3 == 3
- True

myotherlist:
- False
- True

tasks:

- debug: msg="all are true!"
when: mylist is all

- debug: msg="at least one is true"
when: myotherlist|any

Testing paths

The following tests can provide information about a path on the controller:

- debug: msg="path is a directory"
when: mypath|is_dir

116 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- debug: msg="path is a file"
when: mypath|is_file

- debug: msg="path is a symlink"
when: mypath|is_link

- debug: msg="path already exists"
when: mypath|exists

- debug: msg="path is {{ (mypath|is_abs)|ternary('absolute','relative')}}"

- debug: msg="path is the same file as path2"
when: mypath|samefile(path2)

- debug: msg="path is a mount"
when: mypath|ismount

Task results

The following tasks are illustrative of the tests meant to check the status of tasks:

tasks:

- shell: /usr/bin/foo
register: result
ignore_errors: True

- debug: msg="it failed"
when: result|failed

in most cases you'll want a handler, but if you want to do something right now,
→˓this is nice
- debug: msg="it changed"
when: result|changed

- debug: msg="it succeeded in Ansible >= 2.1"
when: result|succeeded

- debug: msg="it succeeded"
when: result|success

- debug: msg="it was skipped"
when: result|skipped

: From 2.1, you can also use success, failure, change, and skip so that the grammar matches, for those who need to
be strict about it.

:

Playbooks An introduction to playbooks

Conditionals Conditional statements in playbooks

Variables All about variables

1.3. Playbooks 117

Ansible 2.2 Documentation, 2.4

Loops Looping in playbooks

Playbook Roles and Include Statements Playbook organization by roles

Best Practices Best practices in playbooks

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Lookups

Lookup plugins allow access of data in Ansible from outside sources. Like all templating, these plugins are evaluated
on the Ansible control machine, and can include reading the filesystem but also contacting external datastores and
services. These values are then made available using the standard templating system in Ansible, and are typically used
to load variables or templates with information from those systems.

: This is considered an advanced feature, and many users will probably not rely on these features.

: Lookups occur on the local computer, not on the remote computer.

: Lookups are executed with a cwd relative to the role or play, as opposed to local tasks which are executed with the
cwd of the executed script.

: Since 1.9 you can pass wantlist=True to lookups to use in jinja2 template “for” loops.

: Some lookups pass arguments to a shell. When using variables from a remote/untrusted source, use the |quote
filter to ensure safe usage.

Topics

• Lookups

– Intro to Lookups: Getting File Contents

– The Password Lookup

– The Passwordstore Lookup

• Examples

– The CSV File Lookup

– The INI File Lookup

– The Credstash Lookup

– The DNS Lookup (dig)

– MongoDB Lookup

118 Chapter 1. About Ansible

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

– More Lookups

Intro to Lookups: Getting File Contents

The file lookup is the most basic lookup type.

Contents can be read off the filesystem as follows:

- hosts: all

vars:
contents: "{{ lookup('file', '/etc/foo.txt') }}"

tasks:

- debug: msg="the value of foo.txt is {{ contents }}"

The Password Lookup

: A great alternative to the password lookup plugin, if you don’t need to generate random passwords on a per-host
basis, would be to use Vault. Read the documentation there and consider using it first, it will be more desirable for
most applications.

password generates a random plaintext password and stores it in a file at a given filepath.

(Docs about crypted save modes are pending)

If the file exists previously, it will retrieve its contents, behaving just like with_file. Usage of variables like “{{
inventory_hostname }}” in the filepath can be used to set up random passwords per host (which simplifies password
management in ‘host_vars’ variables).

A special case is using /dev/null as a path. The password lookup will generate a new random password each time,
but will not write it to /dev/null. This can be used when you need a password without storing it on the controller.

Generated passwords contain a random mix of upper and lowercase ASCII letters, the numbers 0-9 and punctuation
(”. , : - _”). The default length of a generated password is 20 characters. This length can be changed by passing an
extra parameter:

- hosts: all

tasks:

- name: create a mysql user with a random password
mysql_user:

name: "{{ client }}"
password: "{{ lookup('password', 'credentials/' + client + '/' + tier + '/' +

→˓role + '/mysqlpassword length=15') }}"
priv: "{{ client }}_{{ tier }}_{{ role }}.*:ALL"

(...)

1.3. Playbooks 119

Ansible 2.2 Documentation, 2.4

: If the file already exists, no data will be written to it. If the file has contents, those contents will be read in as the
password. Empty files cause the password to return as an empty string.

Caution: Since this runs on the ansible host as the user running the playbook, and “become” does not apply, the target
file must be readable by the playbook user, or, if it does not exist, the playbook user must have sufficient privileges to
create it. (So, for example, attempts to write into areas such as /etc will fail unless the entire playbook is being run as
root).

Starting in version 1.4, password accepts a “chars” parameter to allow defining a custom character set in the generated
passwords. It accepts comma separated list of names that are either string module attributes (ascii_letters,digits, etc)
or are used literally:

- hosts: all

tasks:

- name: create a mysql user with a random password using only ascii letters
mysql_user: name={{ client }} password="{{ lookup('password', '/tmp/

→˓passwordfile chars=ascii_letters') }}" priv={{ client }}_{{ tier }}_{{ role }}.*:ALL

- name: create a mysql user with a random password using only digits
mysql_user:

name: "{{ client }}"
password: "{{ lookup('password', '/tmp/passwordfile chars=digits') }}"
priv: "{{ client }}_{{ tier }}_{{ role }}.*:ALL"

- name: create a mysql user with a random password using many different char sets
mysql_user:

name: "{{ client }}"
password" "{{ lookup('password', '/tmp/passwordfile chars=ascii_letters,

→˓digits,hexdigits,punctuation') }}"
priv: "{{ client }}_{{ tier }}_{{ role }}.*:ALL"

(...)

To enter comma use two commas ‘„’ somewhere - preferably at the end. Quotes and double quotes are not supported.

The Passwordstore Lookup

2.3 .

The passwordstore lookup enables Ansible to retrieve, create or update passwords from the passwordstore.org
pass utility. It also retrieves YAML style keys stored as multilines in the passwordfile.

Examples

Basic lookup. Fails if example/test doesn’t exist:

password="{{ lookup('passwordstore', 'example/test')}}`

Create pass with random 16 character password. If password exists just give the password:

120 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

password="{{ lookup('passwordstore', 'example/test create=true')}}`

Different size password:

password="{{ lookup('passwordstore', 'example/test create=true length=42')}}`

Create password and overwrite the password if it exists. As a bonus, this module includes the old password inside the
pass file:

password="{{ lookup('passwordstore', 'example/test create=true overwrite=true')}}`

Return the value for user in the KV pair user: username:

password="{{ lookup('passwordstore', 'example/test subkey=user')}}`

Return the entire password file content:

password="{{ lookup('passwordstore', 'example/test returnall=true')}}`

The location of the password-store directory can be specified in the following ways:

• Default is ~/.password-store

• Can be overruled by PASSWORD_STORE_DIR environment variable

• Can be overruled by ‘passwordstore: path/to/.password-store’ ansible setting

• Can be overrules by ‘directory=path’ argument in the lookup call

The CSV File Lookup

1.5 .

The csvfile lookup reads the contents of a file in CSV (comma-separated value) format. The lookup looks for the
row where the first column matches keyname, and returns the value in the second column, unless a different column
is specified.

The example below shows the contents of a CSV file named elements.csv with information about the periodic table of
elements:

Symbol,Atomic Number,Atomic Mass
H,1,1.008
He,2,4.0026
Li,3,6.94
Be,4,9.012
B,5,10.81

We can use the csvfile plugin to look up the atomic number or atomic of Lithium by its symbol:

- debug: msg="The atomic number of Lithium is {{ lookup('csvfile', 'Li file=elements.
→˓csv delimiter=,') }}"
- debug: msg="The atomic mass of Lithium is {{ lookup('csvfile', 'Li file=elements.
→˓csv delimiter=, col=2') }}"

The csvfile lookup supports several arguments. The format for passing arguments is:

lookup('csvfile', 'key arg1=val1 arg2=val2 ...')

1.3. Playbooks 121

Ansible 2.2 Documentation, 2.4

The first value in the argument is the key, which must be an entry that appears exactly once in column 0 (the first
column, 0-indexed) of the table. All other arguments are optional.

Field Default Description
file ansible.csv Name of the file to load
col 1 The column to output, indexed by 0
delimiter TAB Delimiter used by CSV file. As a special case, tab can be specified as either TAB or t.
default empty string Default return value if the key is not in the csv file
encoding utf-8 Encoding (character set) of the used CSV file (added in version 2.1)

: The default delimiter is TAB, not comma.

The INI File Lookup

2.0 .

The ini lookup reads the contents of a file in INI format (key1=value1). This plugin retrieve the value on the right
side after the equal sign (‘=’) of a given section ([section]). You can also read a property file which - in this case - does
not contain section.

Here’s a simple example of an INI file with user/password configuration:

[production]
My production information
user=robert
pass=somerandompassword

[integration]
My integration information
user=gertrude
pass=anotherpassword

We can use the ini plugin to lookup user configuration:

- debug: msg="User in integration is {{ lookup('ini', 'user section=integration
→˓file=users.ini') }}"
- debug: msg="User in production is {{ lookup('ini', 'user section=production
→˓file=users.ini') }}"

Another example for this plugin is for looking for a value on java properties. Here’s a simple properties we’ll take as
an example:

user.name=robert
user.pass=somerandompassword

You can retrieve the user.name field with the following lookup:

- debug: msg="user.name is {{ lookup('ini', 'user.name type=properties file=user.
→˓properties') }}"

The ini lookup supports several arguments like the csv plugin. The format for passing arguments is:

lookup('ini', 'key [type=<properties|ini>] [section=section] [file=file.ini]
→˓[re=true] [default=<defaultvalue>]')

122 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

The first value in the argument is the key, which must be an entry that appears exactly once on keys. All other
arguments are optional.

Field Default Description
type ini Type of the file. Can be ini or properties (for java properties).
file ansible.ini Name of the file to load
section global Default section where to lookup for key.
re False The key is a regexp.
default empty string return value if the key is not in the ini file

: In java properties files, there’s no need to specify a section.

The Credstash Lookup

2.0 .

Credstash is a small utility for managing secrets using AWS’s KMS and DynamoDB: https://github.com/fugue/
credstash

First, you need to store your secrets with credstash:

credstash put my-github-password secure123

my-github-password has been stored

Example usage:

- name: "Test credstash lookup plugin -- get my github password"

debug: msg="Credstash lookup! {{ lookup('credstash', 'my-github-password') }}"

You can specify regions or tables to fetch secrets from:

- name: "Test credstash lookup plugin -- get my other password from us-west-1"

debug: msg="Credstash lookup! {{ lookup('credstash', 'my-other-password', region=
→˓'us-west-1') }}"

- name: "Test credstash lookup plugin -- get the company's github password"
debug: msg="Credstash lookup! {{ lookup('credstash', 'company-github-password',

→˓table='company-passwords') }}"

If you use the context feature when putting your secret, you can get it by passing a dictionary to the context option like
this:

- name: test

hosts: localhost
vars:
context:

app: my_app
environment: production

tasks:

- name: "Test credstash lookup plugin -- get the password with a context passed as
→˓a variable"

1.3. Playbooks 123

https://github.com/fugue/credstash
https://github.com/fugue/credstash

Ansible 2.2 Documentation, 2.4

debug: msg="{{ lookup('credstash', 'some-password', context=context) }}"

- name: "Test credstash lookup plugin -- get the password with a context defined
→˓here"

debug: msg="{{ lookup('credstash', 'some-password', context=dict(app='my_app',
→˓environment='production')) }}"

If you’re not using 2.0 yet, you can do something similar with the credstash tool and the pipe lookup (see below):

debug: msg="Poor man's credstash lookup! {{ lookup('pipe', 'credstash -r us-west-1
→˓get my-other-password') }}"

The DNS Lookup (dig)

1.9.0 .

: This lookup depends on the dnspython library.

The dig lookup runs queries against DNS servers to retrieve DNS records for a specific name (FQDN - fully qualified
domain name). It is possible to lookup any DNS record in this manner.

There is a couple of different syntaxes that can be used to specify what record should be retrieved, and for which name.
It is also possible to explicitly specify the DNS server(s) to use for lookups.

In its simplest form, the dig lookup plugin can be used to retrieve an IPv4 address (DNS A record) associated with
FQDN:

: If you need to obtain the AAAA record (IPv6 address), you must specify the record type explicitly. Syntax for
specifying the record type is described below.

: The trailing dot in most of the examples listed is purely optional, but is specified for completeness/correctness sake.

- debug: msg="The IPv4 address for example.com. is {{ lookup('dig', 'example.com.')}}"

In addition to (default) A record, it is also possible to specify a different record type that should be queried. This can be
done by either passing-in additional parameter of format qtype=TYPE to the dig lookup, or by appending /TYPE
to the FQDN being queried. For example:

- debug: msg="The TXT record for example.org. is {{ lookup('dig', 'example.org.',
→˓'qtype=TXT') }}"
- debug: msg="The TXT record for example.org. is {{ lookup('dig', 'example.org./TXT')
→˓}}"

If multiple values are associated with the requested record, the results will be returned as a comma-separated list. In
such cases you may want to pass option wantlist=True to the plugin, which will result in the record values being
returned as a list over which you can iterate later on:

- debug: msg="One of the MX records for gmail.com. is {{ item }}"
with_items: "{{ lookup('dig', 'gmail.com./MX', wantlist=True) }}"

124 Chapter 1. About Ansible

http://www.dnspython.org/

Ansible 2.2 Documentation, 2.4

In case of reverse DNS lookups (PTR records), you can also use a convenience syntax of format IP_ADDRESS/PTR.
The following three lines would produce the same output:

- debug: msg="Reverse DNS for 192.0.2.5 is {{ lookup('dig', '192.0.2.5/PTR') }}"
- debug: msg="Reverse DNS for 192.0.2.5 is {{ lookup('dig', '5.2.0.192.in-addr.arpa./
→˓PTR') }}"
- debug: msg="Reverse DNS for 192.0.2.5 is {{ lookup('dig', '5.2.0.192.in-addr.arpa.',
→˓ 'qtype=PTR') }}"

By default, the lookup will rely on system-wide configured DNS servers for performing the query. It is also possible
to explicitly specify DNS servers to query using the @DNS_SERVER_1,DNS_SERVER_2,...,DNS_SERVER_N
notation. This needs to be passed-in as an additional parameter to the lookup. For example:

- debug: msg="Querying 198.51.100.23 for IPv4 address for example.com. produces {{
→˓lookup('dig', 'example.com', '@198.51.100.23') }}"

In some cases the DNS records may hold a more complex data structure, or it may be useful to obtain the results in
a form of a dictionary for future processing. The dig lookup supports parsing of a number of such records, with the
result being returned as a dictionary. This way it is possible to easily access such nested data. This return format can
be requested by passing-in the flat=0 option to the lookup. For example:

- debug: msg="XMPP service for gmail.com. is available at {{ item.target }} on port {
→˓{ item.port }}"
with_items: "{{ lookup('dig', '_xmpp-server._tcp.gmail.com./SRV', 'flat=0',

→˓wantlist=True) }}"

Take note that due to the way Ansible lookups work, you must pass the wantlist=True argument to the lookup,
otherwise Ansible will report errors.

Currently the dictionary results are supported for the following records:

: ALL is not a record per-se, merely the listed fields are available for any record results you retrieve in the form of a
dictionary.

1.3. Playbooks 125

Ansible 2.2 Documentation, 2.4

Record Fields
ALL owner, ttl, type
A address
AAAA address
CNAME target
DNAME target
DLV algorithm, digest_type, key_tag, digest
DNSKEY flags, algorithm, protocol, key
DS algorithm, digest_type, key_tag, digest
HINFO cpu, os
LOC latitude, longitude, altitude, size, horizontal_precision, vertical_precision
MX preference, exchange
NAPTR order, preference, flags, service, regexp, replacement
NS target
NSEC3PARAM algorithm, flags, iterations, salt
PTR target
RP mbox, txt
SOA mname, rname, serial, refresh, retry, expire, minimum
SPF strings
SRV priority, weight, port, target
SSHFP algorithm, fp_type, fingerprint
TLSA usage, selector, mtype, cert
TXT strings

MongoDB Lookup

2.3 .

: This lookup depends on the pymongo 2.4+ library.

The MongoDB lookup runs the find() command on a given collection on a given MongoDB server.

The result is a list of jsons, so slightly different from what PyMongo returns. In particular, timestamps are converted
to epoch integers.

Currently, the following parameters are supported.

126 Chapter 1. About Ansible

http://www.mongodb.org/

Ansible 2.2 Documentation, 2.4

Parameter Manda-
tory

Type Default
Value

Comment

connec-
tion_string

no string mon-
godb://localhost/

Can be any valid MongoDB connection string, supporting
authentication, replicasets, etc. More info at
https://docs.mongodb.org/manual/reference/connection-string/

ex-
tra_connection_parameters

no dict {} Dictionary with extra parameters like ssl, ssl_keyfile, maxPoolSize etc...
Check the full list here: https://api.mongodb.org/python/current/api/
pymongo/mongo_client.html#pymongo.mongo_client.MongoClient

database yes string Name of the database which the query will be made
collection yes string Name of the collection which the query will be made
filter no dict [py-

mongo
default]

Criteria of the output Example: { “hostname”: “batman” }

projection no dict [py-
mongo
default]

Fields you want returned. Example: { “pid”: True , “_id” : False ,
“hostname” : True }

skip no in-
te-
ger

[py-
mongo
default]

How many results should be skept

limit no in-
te-
ger

[py-
mongo
default]

How many results should be shown

sort no list [py-
mongo
default]

Sorting rules. Please notice the constats are replaced by strings. [[
“startTime” , “ASCENDING”] , [“age”, “DESCENDING”]]

[any find()
parameter]

no [any] [py-
mongo
default]

Every parameter with exception to connection_string, database and
collection are passed to pymongo directly.

Please check https://api.mongodb.org/python/current/api/pymongo/collection.html?highlight=find#pymongo.
collection.Collection.find for more detais.

Since there are too many parameters for this lookup method, below is a sample playbook which shows its usage and a
nice way to feed the parameters:

- hosts: all

gather_facts: false

vars:
mongodb_parameters:

#optional parameter, default = "mongodb://localhost/"
connection_string: "mongodb://localhost/"
extra_connection_parameters: { "ssl" : True , "ssl_certfile": /etc/self_

→˓signed_certificate.pem" }

#mandatory parameters
database: 'local'
collection: "startup_log"

#optional query parameters
#we accept any parameter from the normal mongodb query.
the offical documentation is here
https://api.mongodb.org/python/current/api/pymongo/collection.html?

→˓highlight=find#pymongo.collection.Collection.find
filter: { "hostname": "batman" }
projection: { "pid": True , "_id" : False , "hostname" : True }

1.3. Playbooks 127

https://docs.mongodb.org/manual/reference/connection-string/
https://api.mongodb.org/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient
https://api.mongodb.org/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient
https://api.mongodb.org/python/current/api/pymongo/collection.html?highlight=find#pymongo.collection.Collection.find
https://api.mongodb.org/python/current/api/pymongo/collection.html?highlight=find#pymongo.collection.Collection.find

Ansible 2.2 Documentation, 2.4

skip: 0
limit: 1
sort: [["startTime" , "ASCENDING"] , ["age", "DESCENDING"]]

tasks:
- debug: msg="Mongo has already started with the following PID [{{ item.pid }}]"

with_mongodb: "{{mongodb_parameters}}"

Sample output:

mdiez@batman:~/ansible$ ansible-playbook m.yml -i localhost.ini

PLAY [all] ***

TASK [debug] ***
Sunday 20 March 2016 22:40:39 +0200 (0:00:00.023) 0:00:00.023 **********
ok: [localhost] => (item={u'hostname': u'batman', u'pid': 60639L}) => {

"item": {
"hostname": "batman",
"pid": 60639

},
"msg": "Mongo has already started with the following PID [60639]"

}

PLAY RECAP ***
localhost : ok=1 changed=0 unreachable=0 failed=0

Sunday 20 March 2016 22:40:39 +0200 (0:00:00.067) 0:00:00.091 **********
===
debug --- 0.07s
mdiez@batman:~/ansible$

More Lookups

Various lookup plugins allow additional ways to iterate over data. In Loops you will learn how to use them to walk
over collections of numerous types. However, they can also be used to pull in data from remote sources, such as shell
commands or even key value stores. This section will cover lookup plugins in this capacity.

Here are some examples:

- hosts: all

tasks:

- debug: msg="{{ lookup('env','HOME') }} is an environment variable"

- name: lines will iterate over each line from stdout of a command
debug: msg="{{ item }} is a line from the result of this command"
with_lines: cat /etc/motd

- debug: msg="{{ lookup('pipe','date') }} is the raw result of running this
→˓command"

- name: Always use quote filter to make sure your variables are safe to use with
→˓shell

128 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

debug: msg="{{ lookup('pipe','getent ' + myuser|quote) }}"

- name: Quote variables with_lines also as it executes shell
debug: msg="{{ item }} is a line from myfile"
with_lines: "cat {{myfile|quote}}"

- name: redis_kv lookup requires the Python redis package
debug: msg="{{ lookup('redis_kv', 'redis://localhost:6379,somekey') }} is

→˓value in Redis for somekey"

- name: dnstxt lookup requires the Python dnspython package
debug: msg="{{ lookup('dnstxt', 'example.com') }} is a DNS TXT record for

→˓example.com"

- debug: msg="{{ lookup('template', './some_template.j2') }} is a value from
→˓evaluation of this template"

- name: loading a json file from a template as a string
debug: msg="{{ lookup('template', './some_json.json.j2', convert_data=False) }}

→˓ is a value from evaluation of this template"

- debug: msg="{{ lookup('etcd', 'foo') }} is a value from a locally running etcd"

shelvefile lookup retrieves a string value corresponding to a key inside a
→˓Python shelve file

- debug: msg="{{ lookup('shelvefile', 'file=path_to_some_shelve_file.db key=key_
→˓to_retrieve') }}

The following lookups were added in 1.9
url lookup splits lines by default, an option to disable this was added in 2.4
- debug: msg="{{item}}"
with_url:

- 'https://github.com/gremlin.keys'

outputs the cartesian product of the supplied lists
- debug: msg="{{item}}"

with_cartesian:
- "{{list1}}"
- "{{list2}}"
- [1,2,3,4,5,6]

- name: Added in 2.3 allows using the system's keyring
debug: msg={{lookup('keyring','myservice myuser')}}

As an alternative, you can also assign lookup plugins to variables or use them elsewhere. These macros are evaluated
each time they are used in a task (or template):

vars:
motd_value: "{{ lookup('file', '/etc/motd') }}"

tasks:

- debug: msg="motd value is {{ motd_value }}"

:

Playbooks An introduction to playbooks

1.3. Playbooks 129

Ansible 2.2 Documentation, 2.4

Conditionals Conditional statements in playbooks

Variables All about variables

Loops Looping in playbooks

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Python Version and Templating

Jinja2 templates leverage Python data types and standard functions. This makes for a rich set of operations that can
be performed on data. However, this also means that certain specifics of the underlying Python becomes visible to
template authors. Since Ansible playbooks use Jinja2 for templates and variables, this means that playbook authors
need to be aware of these specifics as well.

Unless otherwise noted, these differences are only of interest when running Ansible in Python2 versus Python3.
Changes within Python2 and Python3 are generally small enough that they are not visible at the jinja2 level.

Dictionary Views

In Python2, the dict.keys(), dict.values(), and dict.items() methods returns a list. Jinja2 returns
that to Ansible via a string representation that Ansible can turn back into a list. In Python3, those methods return a
dictionary view object. The string representation that Jinja2 returns for dictionary views cannot be parsed back into a
list by Ansible. It is, however, easy to make this portable by using the list filter whenever using dict.keys(),
dict.values(), or dict.items():

vars:
hosts:
testhost1: 127.0.0.2
testhost2: 127.0.0.3

tasks:
- debug:

msg: '{{ item }}'
Only works with Python 2
#with_items: "{{ hosts.keys() }}"
Works with both Python 2 and Python 3
with_items: "{{ hosts.keys() | list }}"

dict.iteritems()

In Python2, dictionaries have iterkeys(), itervalues(), and iteritems() methods. These methods have
been removed in Python3. Playbooks and Jinja2 templates should use dict.keys(), dict.values(), and
dict.items() in order to be compatible with both Python2 and Python3:

vars:
hosts:
testhost1: 127.0.0.2
testhost2: 127.0.0.3

tasks:
- debug:

msg: '{{ item }}'
Only works with Python 2
#with_items: "{{ hosts.iteritems() }}"

130 Chapter 1. About Ansible

http://groups.google.com/group/ansible-devel
http://irc.freenode.net
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.values
https://docs.python.org/3/library/stdtypes.html#dict.items
https://docs.python.org/3/library/stdtypes.html#dict-views
http://jinja.pocoo.org/docs/templates/#list
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.values
https://docs.python.org/3/library/stdtypes.html#dict.items
https://docs.python.org/2/library/stdtypes.html#dict.iterkeys
https://docs.python.org/2/library/stdtypes.html#dict.itervalues
https://docs.python.org/2/library/stdtypes.html#dict.iteritems
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.values
https://docs.python.org/3/library/stdtypes.html#dict.items

Ansible 2.2 Documentation, 2.4

Works with both Python 2 and Python 3
with_items: "{{ hosts.items() | list }}"

:

• The Dictionary Views entry for information on why the list filter is necessary here.

:

Playbooks An introduction to playbooks

Conditionals Conditional statements in playbooks

Loops Looping in playbooks

Playbook Roles and Include Statements Playbook organization by roles

Best Practices Best practices in playbooks

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Conditionals

Topics

• Conditionals

– The When Statement

– Loops and Conditionals

– Loading in Custom Facts

– Applying ‘when’ to roles and includes

– Conditional Imports

– Selecting Files And Templates Based On Variables

– Register Variables

Often the result of a play may depend on the value of a variable, fact (something learned about the remote system), or
previous task result. In some cases, the values of variables may depend on other variables. Further, additional groups
can be created to manage hosts based on whether the hosts match other criteria. There are many options to control
execution flow in Ansible. More examples of supported conditionals can be located here: http://jinja.pocoo.org/docs/
dev/templates/#comparisons

Let’s dig into what they are.

The When Statement

Sometimes you will want to skip a particular step on a particular host. This could be something as simple as not
installing a certain package if the operating system is a particular version, or it could be something like performing
some cleanup steps if a filesystem is getting full.

This is easy to do in Ansible with the when clause, which contains a raw Jinja2 expression without double curly braces
(see Variables). It’s actually pretty simple:

1.3. Playbooks 131

http://jinja.pocoo.org/docs/templates/#list
http://groups.google.com/group/ansible-devel
http://irc.freenode.net
http://jinja.pocoo.org/docs/dev/templates/#comparisons
http://jinja.pocoo.org/docs/dev/templates/#comparisons

Ansible 2.2 Documentation, 2.4

tasks:
- name: "shut down Debian flavored systems"
command: /sbin/shutdown -t now
when: ansible_os_family == "Debian"
note that Ansible facts and vars like ansible_os_family can be used
directly in conditionals without double curly braces

You can also use parentheses to group conditions:

tasks:
- name: "shut down CentOS 6 and Debian 7 systems"
command: /sbin/shutdown -t now
when: (ansible_distribution == "CentOS" and ansible_distribution_major_version ==

→˓"6") or
(ansible_distribution == "Debian" and ansible_distribution_major_version ==

→˓"7")

Multiple conditions that all need to be true (a logical ‘and’) can also be specified as a list:

tasks:
- name: "shut down CentOS 6 systems"
command: /sbin/shutdown -t now
when:

- ansible_distribution == "CentOS"
- ansible_distribution_major_version == "6"

A number of Jinja2 “filters” can also be used in when statements, some of which are unique and provided by Ansible.
Suppose we want to ignore the error of one statement and then decide to do something conditionally based on success
or failure:

tasks:
- command: /bin/false
register: result
ignore_errors: True

- command: /bin/something
when: result|failed

In older versions of ansible use |success, now both are valid but succeeded uses
→˓the correct tense.
- command: /bin/something_else
when: result|succeeded

- command: /bin/still/something_else
when: result|skipped

: the filters have been updated in 2.1 so both success and succeeded work (fail/failed, etc).

Note that was a little bit of foreshadowing on the ‘register’ statement. We’ll get to it a bit later in this chapter.

As a reminder, to see what facts are available on a particular system, you can do:

ansible hostname.example.com -m setup

Tip: Sometimes you’ll get back a variable that’s a string and you’ll want to do a math operation comparison on it. You
can do this like so:

132 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

tasks:
- shell: echo "only on Red Hat 6, derivatives, and later"
when: ansible_os_family == "RedHat" and ansible_lsb.major_release|int >= 6

: the above example requires the lsb_release package on the target host in order to return the ansible_lsb.major_release
fact.

Variables defined in the playbooks or inventory can also be used. An example may be the execution of a task based on
a variable’s boolean value:

vars:
epic: true

Then a conditional execution might look like:

tasks:
- shell: echo "This certainly is epic!"

when: epic

or:

tasks:
- shell: echo "This certainly isn't epic!"

when: not epic

If a required variable has not been set, you can skip or fail using Jinja2’s defined test. For example:

tasks:
- shell: echo "I've got '{{ foo }}' and am not afraid to use it!"
when: foo is defined

- fail: msg="Bailing out. this play requires 'bar'"
when: bar is undefined

This is especially useful in combination with the conditional import of vars files (see below). As the examples show,
you don’t need to use {{ }} to use variables inside conditionals, as these are already implied.

Loops and Conditionals

Combining when with with_items (see Loops), be aware that the when statement is processed separately for each item.
This is by design:

tasks:
- command: echo {{ item }}

with_items: [0, 2, 4, 6, 8, 10]
when: item > 5

If you need to skip the whole task depending on the loop variable being defined, used the |default filter to provide an
empty iterator:

- command: echo {{ item }}
with_items: "{{ mylist|default([]) }}"
when: item > 5

1.3. Playbooks 133

Ansible 2.2 Documentation, 2.4

If using with_dict which does not take a list:

- command: echo {{ item.key }}
with_dict: "{{ mydict|default({}) }}"
when: item.value > 5

Loading in Custom Facts

It’s also easy to provide your own facts if you want, which is covered in Developing Modules. To run them, just make
a call to your own custom fact gathering module at the top of your list of tasks, and variables returned there will be
accessible to future tasks:

tasks:
- name: gather site specific fact data

action: site_facts
- command: /usr/bin/thingy

when: my_custom_fact_just_retrieved_from_the_remote_system == '1234'

Applying ‘when’ to roles and includes

Note that if you have several tasks that all share the same conditional statement, you can affix the conditional to a task
include statement as below. All the tasks get evaluated, but the conditional is applied to each and every task:

- include: tasks/sometasks.yml
when: "'reticulating splines' in output"

: In versions prior to 2.0 this worked with task includes but not playbook includes. 2.0 allows it to work with both.

Or with a role:

- hosts: webservers
roles:

- { role: debian_stock_config, when: ansible_os_family == 'Debian' }

You will note a lot of ‘skipped’ output by default in Ansible when using this approach on systems that don’t match the
criteria. Read up on the ‘group_by’ module in the About Modules docs for a more streamlined way to accomplish the
same thing.

Conditional Imports

: This is an advanced topic that is infrequently used. You can probably skip this section.

Sometimes you will want to do certain things differently in a playbook based on certain criteria. Having one playbook
that works on multiple platforms and OS versions is a good example.

As an example, the name of the Apache package may be different between CentOS and Debian, but it is easily handled
with a minimum of syntax in an Ansible Playbook:

134 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- hosts: all

remote_user: root
vars_files:
- "vars/common.yml"
- ["vars/{{ ansible_os_family }}.yml", "vars/os_defaults.yml"]

tasks:
- name: make sure apache is started
service: name={{ apache }} state=started

: The variable ‘ansible_os_family’ is being interpolated into the list of filenames being defined for vars_files.

As a reminder, the various YAML files contain just keys and values:

for vars/CentOS.yml
apache: httpd
somethingelse: 42

How does this work? If the operating system was ‘CentOS’, the first file Ansible would try to import would be
‘vars/CentOS.yml’, followed by ‘/vars/os_defaults.yml’ if that file did not exist. If no files in the list were found, an
error would be raised. On Debian, it would instead first look towards ‘vars/Debian.yml’ instead of ‘vars/CentOS.yml’,
before falling back on ‘vars/os_defaults.yml’. Pretty simple.

To use this conditional import feature, you’ll need facter or ohai installed prior to running the playbook, but you can
of course push this out with Ansible if you like:

for facter
ansible -m yum -a "pkg=facter state=present"
ansible -m yum -a "pkg=ruby-json state=present"

for ohai
ansible -m yum -a "pkg=ohai state=present"

Ansible’s approach to configuration – separating variables from tasks, keeps your playbooks from turning into arbitrary
code with ugly nested ifs, conditionals, and so on - and results in more streamlined & auditable configuration rules –
especially because there are a minimum of decision points to track.

Selecting Files And Templates Based On Variables

: This is an advanced topic that is infrequently used. You can probably skip this section.

Sometimes a configuration file you want to copy, or a template you will use may depend on a variable. The following
construct selects the first available file appropriate for the variables of a given host, which is often much cleaner than
putting a lot of if conditionals in a template.

The following example shows how to template out a configuration file that was very different between, say, CentOS
and Debian:

- name: template a file
template: src={{ item }} dest=/etc/myapp/foo.conf
with_first_found:
- files:

1.3. Playbooks 135

Ansible 2.2 Documentation, 2.4

- {{ ansible_distribution }}.conf
- default.conf

paths:
- search_location_one/somedir/
- /opt/other_location/somedir/

Register Variables

Often in a playbook it may be useful to store the result of a given command in a variable and access it later. Use of the
command module in this way can in many ways eliminate the need to write site specific facts, for instance, you could
test for the existence of a particular program.

The ‘register’ keyword decides what variable to save a result in. The resulting variables can be used in templates,
action lines, or when statements. It looks like this (in an obviously trivial example):

- name: test play
hosts: all

tasks:

- shell: cat /etc/motd
register: motd_contents

- shell: echo "motd contains the word hi"
when: motd_contents.stdout.find('hi') != -1

As shown previously, the registered variable’s string contents are accessible with the ‘stdout’ value. The registered
result can be used in the “with_items” of a task if it is converted into a list (or already is a list) as shown below.
“stdout_lines” is already available on the object as well though you could also call “home_dirs.stdout.split()” if you
wanted, and could split by other fields:

- name: registered variable usage as a with_items list
hosts: all

tasks:

- name: retrieve the list of home directories
command: ls /home
register: home_dirs

- name: add home dirs to the backup spooler
file: path=/mnt/bkspool/{{ item }} src=/home/{{ item }} state=link
with_items: "{{ home_dirs.stdout_lines }}"
same as with_items: "{{ home_dirs.stdout.split() }}"

As shown previously, the registered variable’s string contents are accessible with the ‘stdout’ value. You may check
the registered variable’s string contents for emptiness:

- name: check registered variable for emptiness
hosts: all

tasks:

- name: list contents of directory
command: ls mydir
register: contents

136 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- name: check contents for emptiness
debug: msg="Directory is empty"
when: contents.stdout == ""

:

Playbooks An introduction to playbooks

Playbook Roles and Include Statements Playbook organization by roles

Best Practices Best practices in playbooks

Variables All about variables

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Loops

Often you’ll want to do many things in one task, such as create a lot of users, install a lot of packages, or repeat a
polling step until a certain result is reached.

This chapter is all about how to use loops in playbooks.

Topics

• Loops

– Standard Loops

– Nested Loops

– Looping over Hashes

– Looping over Files

– Looping over Fileglobs

– Looping over Parallel Sets of Data

– Looping over Subelements

– Looping over Integer Sequences

– Random Choices

– Do-Until Loops

– Finding First Matched Files

– Iterating Over The Results of a Program Execution

– Looping Over A List With An Index

– Using ini file with a loop

– Flattening A List

– Using register with a loop

– Looping over the inventory

1.3. Playbooks 137

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

– Loop Control

– Loops and Includes in 2.0

– Writing Your Own Iterators

Standard Loops

To save some typing, repeated tasks can be written in short-hand like so:

- name: add several users
user:
name: "{{ item }}"
state: present
groups: "wheel"

with_items:
- testuser1
- testuser2

If you have defined a YAML list in a variables file, or the ‘vars’ section, you can also do:

with_items: "{{ somelist }}"

The above would be the equivalent of:

- name: add user testuser1
user:
name: "testuser1"
state: present
groups: "wheel"

- name: add user testuser2
user:
name: "testuser2"
state: present
groups: "wheel"

The yum and apt modules use with_items to execute fewer package manager transactions.

Note that the types of items you iterate over with ‘with_items’ do not have to be simple lists of strings. If you have a
list of hashes, you can reference subkeys using things like:

- name: add several users
user:
name: "{{ item.name }}"
state: present
groups: "{{ item.groups }}"

with_items:
- { name: 'testuser1', groups: 'wheel' }
- { name: 'testuser2', groups: 'root' }

Also be aware that when combining when with with_items (or any other loop statement), the when statement is pro-
cessed separately for each item. See The When Statement for an example.

Loops are actually a combination of things with_ + lookup(), so any lookup plugin can be used as a source for a loop,
‘items’ is lookup.

138 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Nested Loops

Loops can be nested as well:

- name: give users access to multiple databases
mysql_user:
name: "{{ item[0] }}"
priv: "{{ item[1] }}.*:ALL"
append_privs: yes
password: "foo"

with_nested:
- ['alice', 'bob']
- ['clientdb', 'employeedb', 'providerdb']

As with the case of ‘with_items’ above, you can use previously defined variables.:

- name: here, 'users' contains the above list of employees
mysql_user:
name: "{{ item[0] }}"
priv: "{{ item[1] }}.*:ALL"
append_privs: yes
password: "foo"

with_nested:
- "{{ users }}"
- ['clientdb', 'employeedb', 'providerdb']

Looping over Hashes

1.5 .

Suppose you have the following variable:

users:

alice:
name: Alice Appleworth
telephone: 123-456-7890

bob:
name: Bob Bananarama
telephone: 987-654-3210

And you want to print every user’s name and phone number. You can loop through the elements of a hash using
with_dict like this:

tasks:
- name: Print phone records
debug:

msg: "User {{ item.key }} is {{ item.value.name }} ({{ item.value.telephone }})"
with_dict: "{{ users }}"

Looping over Files

with_file iterates over the content of a list of files, item will be set to the content of each file in sequence. It can
be used like this:

1.3. Playbooks 139

Ansible 2.2 Documentation, 2.4

- hosts: all

tasks:

emit a debug message containing the content of each file.
- debug:

msg: "{{ item }}"
with_file:

- first_example_file
- second_example_file

Assuming that first_example_file contained the text “hello” and second_example_file contained the
text “world”, this would result in:

TASK [debug msg={{ item }}] **
ok: [localhost] => (item=hello) => {

"item": "hello",
"msg": "hello"

}
ok: [localhost] => (item=world) => {

"item": "world",
"msg": "world"

}

Looping over Fileglobs

with_fileglob matches all files in a single directory, non-recursively, that match a pattern. It calls Python’s glob
library, and can be used like this:

- hosts: all

tasks:

first ensure our target directory exists
- name: Ensure target directory exists

file:
dest: "/etc/fooapp"
state: directory

copy each file over that matches the given pattern
- name: Copy each file over that matches the given pattern

copy:
src: "{{ item }}"
dest: "/etc/fooapp/"
owner: "root"
mode: 0600

with_fileglob:
- "/playbooks/files/fooapp/*"

: When using a relative path with with_fileglob in a role, Ansible resolves the path relative to the
roles/<rolename>/files directory.

140 Chapter 1. About Ansible

https://docs.python.org/2/library/glob.html
https://docs.python.org/2/library/glob.html

Ansible 2.2 Documentation, 2.4

Looping over Parallel Sets of Data

: This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be
reaching for this one often.

Suppose you have the following variable data was loaded in via somewhere:

alpha: ['a', 'b', 'c', 'd']
numbers: [1, 2, 3, 4]

And you want the set of ‘(a, 1)’ and ‘(b, 2)’ and so on. Use ‘with_together’ to get this:

tasks:
- debug:

msg: "{{ item.0 }} and {{ item.1 }}"
with_together:

- "{{ alpha }}"
- "{{ numbers }}"

Looping over Subelements

Suppose you want to do something like loop over a list of users, creating them, and allowing them to login by a certain
set of SSH keys.

How might that be accomplished? Let’s assume you had the following defined and loaded in via “vars_files” or maybe
a “group_vars/all” file:

users:

- name: alice
authorized:

- /tmp/alice/onekey.pub
- /tmp/alice/twokey.pub

mysql:
password: mysql-password
hosts:
- "%"
- "127.0.0.1"
- "::1"
- "localhost"

privs:
- "*.*:SELECT"
- "DB1.*:ALL"

- name: bob
authorized:

- /tmp/bob/id_rsa.pub
mysql:

password: other-mysql-password
hosts:
- "db1"

privs:
- "*.*:SELECT"
- "DB2.*:ALL"

1.3. Playbooks 141

Ansible 2.2 Documentation, 2.4

It might happen like so:

- name: Create User
user:
name: "{{ item.name }}"
state: present
generate_ssh_key: yes

with_items:
- "{{ users }}"

- name: Set authorized ssh key
authorized_key:
user: "{{ item.0.name }}"
key: "{{ lookup('file', item.1) }}"

with_subelements:
- "{{ users }}"
- authorized

Given the mysql hosts and privs subkey lists, you can also iterate over a list in a nested subkey:

- name: Setup MySQL users
mysql_user:
name: "{{ item.0.name }}"
password: "{{ item.0.mysql.password }}"
host: "{{ item.1 }}"
priv: "{{ item.0.mysql.privs | join('/') }}"

with_subelements:
- "{{ users }}"
- "{{ mysql.hosts }}"

Subelements walks a list of hashes (aka dictionaries) and then traverses a list with a given (nested sub-)key inside of
those records.

Optionally, you can add a third element to the subelements list, that holds a dictionary of flags. Currently you can add
the ‘skip_missing’ flag. If set to True, the lookup plugin will skip the lists items that do not contain the given subkey.
Without this flag, or if that flag is set to False, the plugin will yield an error and complain about the missing subkey.

The authorized_key pattern is exactly where it comes up most.

Looping over Integer Sequences

with_sequence generates a sequence of items. You can specify a start value, an end value, an optional “stride”
value that specifies the number of steps to increment the sequence, and an optional printf-style format string.

Arguments should be specified as key=value pair strings.

A simple shortcut form of the arguments string is also accepted: [start-]end[/stride][:format].

Numerical values can be specified in decimal, hexadecimal (0x3f8) or octal (0600). Negative numbers are not sup-
ported. This works as follows:

- hosts: all

tasks:

create groups
- group:

name: "evens"

142 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

state: present
- group:

name: "odds"
state: present

create some test users
- user:

name: "{{ item }}"
state: present
groups: "evens"

with_sequence: start=0 end=32 format=testuser%02x

create a series of directories with even numbers for some reason
- file:

dest: "/var/stuff/{{ item }}"
state: directory

with_sequence: start=4 end=16 stride=2

a simpler way to use the sequence plugin
create 4 groups
- group:

name: "group{{ item }}"
state: present

with_sequence: count=4

Random Choices

The ‘random_choice’ feature can be used to pick something at random. While it’s not a load balancer (there are
modules for those), it can somewhat be used as a poor man’s load balancer in a MacGyver like situation:

- debug:
msg: "{{ item }}"

with_random_choice:
- "go through the door"
- "drink from the goblet"
- "press the red button"
- "do nothing"

One of the provided strings will be selected at random.

At a more basic level, they can be used to add chaos and excitement to otherwise predictable automation environments.

Do-Until Loops

1.4 .

Sometimes you would want to retry a task until a certain condition is met. Here’s an example:

- shell: /usr/bin/foo
register: result
until: result.stdout.find("all systems go") != -1
retries: 5
delay: 10

The above example run the shell module recursively till the module’s result has “all systems go” in its stdout or the
task has been retried for 5 times with a delay of 10 seconds. The default value for “retries” is 3 and “delay” is 5.

1.3. Playbooks 143

Ansible 2.2 Documentation, 2.4

The task returns the results returned by the last task run. The results of individual retries can be viewed by -vv option.
The registered variable will also have a new key “attempts” which will have the number of the retries for the task.

Finding First Matched Files

: This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be
reaching for this one often.

This isn’t exactly a loop, but it’s close. What if you want to use a reference to a file based on the first file found that
matches a given criteria, and some of the filenames are determined by variable names? Yes, you can do that as follows:

- name: INTERFACES | Create Ansible header for /etc/network/interfaces
template:
src: "{{ item }}"
dest: "/etc/foo.conf"

with_first_found:
- "{{ ansible_virtualization_type }}_foo.conf"
- "default_foo.conf"

This tool also has a long form version that allows for configurable search paths. Here’s an example:

- name: some configuration template
template:
src: "{{ item }}"
dest: "/etc/file.cfg"
mode: 0444
owner: "root"
group: "root"

with_first_found:
- files:

- "{{ inventory_hostname }}/etc/file.cfg"
paths:
- ../../../templates.overwrites
- ../../../templates

- files:
- etc/file.cfg

paths:
- templates

Iterating Over The Results of a Program Execution

: This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be
reaching for this one often.

Sometimes you might want to execute a program, and based on the output of that program, loop over the results of
that line by line. Ansible provides a neat way to do that, though you should remember, this is always executed on the
control machine, not the remote machine:

- name: Example of looping over a command result
shell: "/usr/bin/frobnicate {{ item }}"
with_lines:
- "/usr/bin/frobnications_per_host --param {{ inventory_hostname }}"

144 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Ok, that was a bit arbitrary. In fact, if you’re doing something that is inventory related you might just want to write
a dynamic inventory source instead (see Dynamic Inventory), but this can be occasionally useful in quick-and-dirty
implementations.

Should you ever need to execute a command remotely, you would not use the above method. Instead do this:

- name: Example of looping over a REMOTE command result
shell: "/usr/bin/something"
register: command_result

- name: Do something with each result
shell: "/usr/bin/something_else --param {{ item }}"
with_items:
- "{{ command_result.stdout_lines }}"

Looping Over A List With An Index

: This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be
reaching for this one often.

1.3 .

If you want to loop over an array and also get the numeric index of where you are in the array as you go, you can also
do that. It’s uncommonly used:

- name: indexed loop demo
debug:
msg: "at array position {{ item.0 }} there is a value {{ item.1 }}"

with_indexed_items:
- "{{ some_list }}"

Using ini file with a loop

2.0 .

The ini plugin can use regexp to retrieve a set of keys. As a consequence, we can loop over this set. Here is the ini file
we’ll use:

[section1]
value1=section1/value1
value2=section1/value2

[section2]
value1=section2/value1
value2=section2/value2

Here is an example of using with_ini:

- debug:
msg: "{{ item }}"

with_ini:
- value[1-2]
- section: section1
- file: "lookup.ini"
- re: true

1.3. Playbooks 145

Ansible 2.2 Documentation, 2.4

And here is the returned value:

{
"changed": false,
"msg": "All items completed",
"results": [

{
"invocation": {

"module_args": "msg=\"section1/value1\"",
"module_name": "debug"

},
"item": "section1/value1",
"msg": "section1/value1",
"verbose_always": true

},
{

"invocation": {
"module_args": "msg=\"section1/value2\"",
"module_name": "debug"

},
"item": "section1/value2",
"msg": "section1/value2",
"verbose_always": true

}
]

}

Flattening A List

: This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be
reaching for this one often.

In rare instances you might have several lists of lists, and you just want to iterate over every item in all of those lists.
Assume a really crazy hypothetical datastructure:

file: roles/foo/vars/main.yml
packages_base:

- ['foo-package', 'bar-package']
packages_apps:

- [['one-package', 'two-package']]
- [['red-package'], ['blue-package']]

As you can see the formatting of packages in these lists is all over the place. How can we install all of the packages in
both lists?:

- name: flattened loop demo
yum:
name: "{{ item }}"
state: present

with_flattened:
- "{{ packages_base }}"
- "{{ packages_apps }}"

146 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

That’s how!

Using register with a loop

After using register with a loop, the data structure placed in the variable will contain a results attribute that is
a list of all responses from the module.

Here is an example of using register with with_items:

- shell: "echo {{ item }}"
with_items:
- "one"
- "two"

register: echo

This differs from the data structure returned when using register without a loop:

{
"changed": true,
"msg": "All items completed",
"results": [

{
"changed": true,
"cmd": "echo \"one\" ",
"delta": "0:00:00.003110",
"end": "2013-12-19 12:00:05.187153",
"invocation": {

"module_args": "echo \"one\"",
"module_name": "shell"

},
"item": "one",
"rc": 0,
"start": "2013-12-19 12:00:05.184043",
"stderr": "",
"stdout": "one"

},
{

"changed": true,
"cmd": "echo \"two\" ",
"delta": "0:00:00.002920",
"end": "2013-12-19 12:00:05.245502",
"invocation": {

"module_args": "echo \"two\"",
"module_name": "shell"

},
"item": "two",
"rc": 0,
"start": "2013-12-19 12:00:05.242582",
"stderr": "",
"stdout": "two"

}
]

}

Subsequent loops over the registered variable to inspect the results may look like:

- name: Fail if return code is not 0
fail:

1.3. Playbooks 147

Ansible 2.2 Documentation, 2.4

msg: "The command ({{ item.cmd }}) did not have a 0 return code"
when: item.rc != 0
with_items: "{{ echo.results }}"

During iteration, the result of the current item will be placed in the variable:

- shell: echo "{{ item }}"
with_items:
- one
- two

register: echo
changed_when: echo.stdout != "one"

Looping over the inventory

If you wish to loop over the inventory, or just a subset of it, there is multiple ways. One can use a regular with_items
with the play_hosts or groups variables, like this:

show all the hosts in the inventory
- debug:

msg: "{{ item }}"
with_items:
- "{{ groups['all'] }}"

show all the hosts in the current play
- debug:

msg: "{{ item }}"
with_items:
- "{{ play_hosts }}"

There is also a specific lookup plugin inventory_hostnames that can be used like this:

show all the hosts in the inventory
- debug:

msg: "{{ item }}"
with_inventory_hostnames:
- all

show all the hosts matching the pattern, ie all but the group www
- debug:

msg: "{{ item }}"
with_inventory_hostnames:
- all:!www

More information on the patterns can be found on Patterns

Loop Control

2.1 .

In 2.0 you are again able to use with_ loops and task includes (but not playbook includes). This adds the ability to
loop over the set of tasks in one shot. Ansible by default sets the loop variable item for each loop, which causes these
nested loops to overwrite the value of item from the “outer” loops. As of Ansible 2.1, the loop_control option can be
used to specify the name of the variable to be used for the loop:

148 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

main.yml
- include: inner.yml

with_items:
- 1
- 2
- 3

loop_control:
loop_var: outer_item

inner.yml
- debug:

msg: "outer item={{ outer_item }} inner item={{ item }}"
with_items:
- a
- b
- c

: If Ansible detects that the current loop is using a variable which has already been defined, it will raise an error to
fail the task.

2.2 .

When using complex data structures for looping the display might get a bit too “busy”, this is where the C(label)
directive comes to help:

- name: create servers
digital_ocean:
name: "{{ item.name }}"
state: present

with_items:
- name: server1

disks: 3gb
ram: 15Gb
network:

nic01: 100Gb
nic02: 10Gb
...

loop_control:
label: "{{item.name}}"

This will now display just the ‘label’ field instead of the whole structure per ‘item’, it defaults to ‘”{{item}}”’ to
display things as usual.

2.2 .

Another option to loop control is C(pause), which allows you to control the time (in seconds) between execution of
items in a task loop.:

main.yml
- name: create servers, pause 3s before creating next

digital_ocean:
name: "{{ item }}"
state: present

with_items:
- server1
- server2

1.3. Playbooks 149

Ansible 2.2 Documentation, 2.4

loop_control:
pause: 3

Loops and Includes in 2.0

Because loop_control is not available in Ansible 2.0, when using an include with a loop you should use set_fact to
save the “outer” loops value for item:

main.yml
- include: inner.yml

with_items:
- 1
- 2
- 3

inner.yml
- set_fact:

outer_item: "{{ item }}"

- debug:
msg: "outer item={{ outer_item }} inner item={{ item }}"

with_items:
- a
- b
- c

Writing Your Own Iterators

While you ordinarily shouldn’t have to, should you wish to write your own ways to loop over arbitrary data structures,
you can read Developing Plugins for some starter information. Each of the above features are implemented as plugins
in ansible, so there are many implementations to reference.

:

Playbooks An introduction to playbooks

Playbook Roles and Include Statements Playbook organization by roles

Best Practices Best practices in playbooks

Conditionals Conditional statements in playbooks

Variables All about variables

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Blocks

In 2.0 we added a block feature to allow for logical grouping of tasks and even in play error handling. Most of what
you can apply to a single task can be applied at the block level, which also makes it much easier to set data or directives
common to the tasks. This does not mean the directive affects the block itself, but is inherited by the tasks enclosed
by a block. i.e. a when will be applied to the tasks, not the block itself.

150 Chapter 1. About Ansible

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

1.1: Block example

tasks:
- block:

- yum: name={{ item }} state=installed
with_items:
- httpd
- memcached

- template: src=templates/src.j2 dest=/etc/foo.conf

- service: name=bar state=started enabled=True

when: ansible_distribution == 'CentOS'
become: true
become_user: root

In the example above, each of the 3 tasks will be executed after appending the when condition from the block and
evaluating it in the task’s context. Also they inherit the privilege escalation directives enabling “become to root” for
all the enclosed tasks.

Error Handling

Blocks also introduce the ability to handle errors in a way similar to exceptions in most programming languages.

1.2: Block error handling example

tasks:
- block:

- debug: msg='i execute normally'
- command: /bin/false
- debug: msg='i never execute, cause ERROR!'

rescue:
- debug: msg='I caught an error'
- command: /bin/false
- debug: msg='I also never execute :-('

always:
- debug: msg="this always executes"

The tasks in the block would execute normally, if there is any error the rescue section would get executed with
whatever you need to do to recover from the previous error. The always section runs no matter what previous error
did or did not occur in the block and rescue sections.

Another example is how to run handlers after an error occurred :

1.3: Block run handlers in error handling

tasks:
- block:

- debug: msg='i execute normally'
notify: run me even after an error

- command: /bin/false
rescue:

- name: make sure all handlers run
meta: flush_handlers

handlers:

1.3. Playbooks 151

Ansible 2.2 Documentation, 2.4

- name: run me even after an error
debug: msg='this handler runs even on error'

:

Playbooks An introduction to playbooks

Playbook Roles and Include Statements Playbook organization by roles

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Strategies

In 2.0 we added a new way to control play execution, strategy, by default plays will still run as they used to, with
what we call the linear strategy. All hosts will run each task before any host starts the next task, using the number
of forks (default 5) to parallelize.

The serial directive can ‘batch’ this behaviour to a subset of the hosts, which then run to completion of the play
before the next ‘batch’ starts.

A second strategy ships with ansible free, which allows each host to run until the end of the play as fast as it
can.:

- hosts: all
strategy: free
tasks:
...

Strategy Plugins

The strategies are implemented via a new type of plugin, this means that in the future new execution types can be
added, either locally by users or to Ansible itself by a code contribution.

One example is debug strategy. See Playbook Debugger for details.

:

Playbooks An introduction to playbooks

Playbook Roles and Include Statements Playbook organization by roles

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Best Practices

Here are some tips for making the most of Ansible and Ansible playbooks.

You can find some example playbooks illustrating these best practices in our ansible-examples repository. (NOTE:
These may not use all of the features in the latest release, but are still an excellent reference!).

Topics

152 Chapter 1. About Ansible

http://groups.google.com/group/ansible-devel
http://irc.freenode.net
http://groups.google.com/group/ansible-devel
http://irc.freenode.net
https://github.com/ansible/ansible-examples

Ansible 2.2 Documentation, 2.4

• Best Practices

– Content Organization

* Directory Layout

* Alternative Directory Layout

* Use Dynamic Inventory With Clouds

* How to Differentiate Staging vs Production

* Group And Host Variables

* Top Level Playbooks Are Separated By Role

* Task And Handler Organization For A Role

* What This Organization Enables (Examples)

* Deployment vs Configuration Organization

– Staging vs Production

– Rolling Updates

– Always Mention The State

– Group By Roles

– Operating System and Distribution Variance

– Bundling Ansible Modules With Playbooks

– Whitespace and Comments

– Always Name Tasks

– Keep It Simple

– Version Control

– Variables and Vaults

Content Organization

The following section shows one of many possible ways to organize playbook content.

Your usage of Ansible should fit your needs, however, not ours, so feel free to modify this approach and organize as
you see fit.

One thing you will definitely want to do though, is use the “roles” organization feature, which is documented as part
of the main playbooks page. See Playbook Roles and Include Statements. You absolutely should be using roles. Roles
are great. Use roles. Roles! Did we say that enough? Roles are great.

Directory Layout

The top level of the directory would contain files and directories like so:

production # inventory file for production servers
staging # inventory file for staging environment

group_vars/

1.3. Playbooks 153

Ansible 2.2 Documentation, 2.4

group1 # here we assign variables to particular groups
group2 # ""

host_vars/
hostname1 # if systems need specific variables, put them here
hostname2 # ""

library/ # if any custom modules, put them here (optional)
filter_plugins/ # if any custom filter plugins, put them here (optional)

site.yml # master playbook
webservers.yml # playbook for webserver tier
dbservers.yml # playbook for dbserver tier

roles/
common/ # this hierarchy represents a "role"

tasks/ #
main.yml # <-- tasks file can include smaller files if warranted

handlers/ #
main.yml # <-- handlers file

templates/ # <-- files for use with the template resource
ntp.conf.j2 # <------- templates end in .j2

files/ #
bar.txt # <-- files for use with the copy resource
foo.sh # <-- script files for use with the script resource

vars/ #
main.yml # <-- variables associated with this role

defaults/ #
main.yml # <-- default lower priority variables for this role

meta/ #
main.yml # <-- role dependencies

library/ # roles can also include custom modules
lookup_plugins/ # or other types of plugins, like lookup in this case

webtier/ # same kind of structure as "common" was above, done for
→˓the webtier role

monitoring/ # ""
fooapp/ # ""

Alternative Directory Layout

Alternatively you can put each inventory file with its group_vars/host_vars in a separate directory. This is
particularly useful if your group_vars/host_vars don’t have that much in common in different environments.
The layout could look something like this:

inventories/
production/

hosts # inventory file for production servers
group_vars/

group1 # here we assign variables to particular groups
group2 # ""

host_vars/
hostname1 # if systems need specific variables, put them here
hostname2 # ""

staging/
hosts # inventory file for staging environment

154 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

group_vars/
group1 # here we assign variables to particular groups
group2 # ""

host_vars/
stagehost1 # if systems need specific variables, put them here
stagehost2 # ""

library/
filter_plugins/

site.yml
webservers.yml
dbservers.yml

roles/
common/
webtier/
monitoring/
fooapp/

This layout gives you more flexibility for larger environments, as well as a total separation of inventory variables
between different environments. The downside is that it is harder to maintain, because there are more files.

Use Dynamic Inventory With Clouds

If you are using a cloud provider, you should not be managing your inventory in a static file. See Dynamic Inventory.

This does not just apply to clouds – If you have another system maintaining a canonical list of systems in your
infrastructure, usage of dynamic inventory is a great idea in general.

How to Differentiate Staging vs Production

If managing static inventory, it is frequently asked how to differentiate different types of environments. The following
example shows a good way to do this. Similar methods of grouping could be adapted to dynamic inventory (for
instance, consider applying the AWS tag “environment:production”, and you’ll get a group of systems automatically
discovered named “ec2_tag_environment_production”.

Let’s show a static inventory example though. Below, the production file contains the inventory of all of your produc-
tion hosts.

It is suggested that you define groups based on purpose of the host (roles) and also geography or datacenter location
(if applicable):

file: production

[atlanta-webservers]
www-atl-1.example.com
www-atl-2.example.com

[boston-webservers]
www-bos-1.example.com
www-bos-2.example.com

[atlanta-dbservers]
db-atl-1.example.com
db-atl-2.example.com

1.3. Playbooks 155

Ansible 2.2 Documentation, 2.4

[boston-dbservers]
db-bos-1.example.com

webservers in all geos
[webservers:children]
atlanta-webservers
boston-webservers

dbservers in all geos
[dbservers:children]
atlanta-dbservers
boston-dbservers

everything in the atlanta geo
[atlanta:children]
atlanta-webservers
atlanta-dbservers

everything in the boston geo
[boston:children]
boston-webservers
boston-dbservers

Group And Host Variables

This section extends on the previous example.

Groups are nice for organization, but that’s not all groups are good for. You can also assign variables to them! For
instance, atlanta has its own NTP servers, so when setting up ntp.conf, we should use them. Let’s set those now:

file: group_vars/atlanta
ntp: ntp-atlanta.example.com
backup: backup-atlanta.example.com

Variables aren’t just for geographic information either! Maybe the webservers have some configuration that doesn’t
make sense for the database servers:

file: group_vars/webservers
apacheMaxRequestsPerChild: 3000
apacheMaxClients: 900

If we had any default values, or values that were universally true, we would put them in a file called group_vars/all:

file: group_vars/all
ntp: ntp-boston.example.com
backup: backup-boston.example.com

We can define specific hardware variance in systems in a host_vars file, but avoid doing this unless you need to:

file: host_vars/db-bos-1.example.com

156 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

foo_agent_port: 86
bar_agent_port: 99

Again, if we are using dynamic inventory sources, many dynamic groups are automatically created. So a tag like
“class:webserver” would load in variables from the file “group_vars/ec2_tag_class_webserver” automatically.

Top Level Playbooks Are Separated By Role

In site.yml, we include a playbook that defines our entire infrastructure. Note this is SUPER short, because it’s just
including some other playbooks. Remember, playbooks are nothing more than lists of plays:

file: site.yml
- include: webservers.yml
- include: dbservers.yml

In a file like webservers.yml (also at the top level), we simply map the configuration of the webservers group to the
roles performed by the webservers group. Also notice this is incredibly short. For example:

file: webservers.yml
- hosts: webservers

roles:
- common
- webtier

The idea here is that we can choose to configure our whole infrastructure by “running” site.yml or we could just choose
to run a subset by running webservers.yml. This is analogous to the “–limit” parameter to ansible but a little more
explicit:

ansible-playbook site.yml --limit webservers
ansible-playbook webservers.yml

Task And Handler Organization For A Role

Below is an example tasks file that explains how a role works. Our common role here just sets up NTP, but it could do
more if we wanted:

file: roles/common/tasks/main.yml

- name: be sure ntp is installed
yum: name=ntp state=installed
tags: ntp

- name: be sure ntp is configured
template: src=ntp.conf.j2 dest=/etc/ntp.conf
notify:
- restart ntpd

tags: ntp

- name: be sure ntpd is running and enabled
service: name=ntpd state=started enabled=yes
tags: ntp

1.3. Playbooks 157

Ansible 2.2 Documentation, 2.4

Here is an example handlers file. As a review, handlers are only fired when certain tasks report changes, and are run at
the end of each play:

file: roles/common/handlers/main.yml
- name: restart ntpd

service: name=ntpd state=restarted

See Playbook Roles and Include Statements for more information.

What This Organization Enables (Examples)

Above we’ve shared our basic organizational structure.

Now what sort of use cases does this layout enable? Lots! If I want to reconfigure my whole infrastructure, it’s just:

ansible-playbook -i production site.yml

What about just reconfiguring NTP on everything? Easy.:

ansible-playbook -i production site.yml --tags ntp

What about just reconfiguring my webservers?:

ansible-playbook -i production webservers.yml

What about just my webservers in Boston?:

ansible-playbook -i production webservers.yml --limit boston

What about just the first 10, and then the next 10?:

ansible-playbook -i production webservers.yml --limit boston[1-10]
ansible-playbook -i production webservers.yml --limit boston[11-20]

And of course just basic ad-hoc stuff is also possible.:

ansible boston -i production -m ping
ansible boston -i production -m command -a '/sbin/reboot'

And there are some useful commands to know (at least in 1.1 and higher):

confirm what task names would be run if I ran this command and said "just ntp tasks"
ansible-playbook -i production webservers.yml --tags ntp --list-tasks

confirm what hostnames might be communicated with if I said "limit to boston"
ansible-playbook -i production webservers.yml --limit boston --list-hosts

Deployment vs Configuration Organization

The above setup models a typical configuration topology. When doing multi-tier deployments, there are going to be
some additional playbooks that hop between tiers to roll out an application. In this case, ‘site.yml’ may be augmented
by playbooks like ‘deploy_exampledotcom.yml’ but the general concepts can still apply.

Consider “playbooks” as a sports metaphor – you don’t have to just have one set of plays to use against your infras-
tructure all the time – you can have situational plays that you use at different times and for different purposes.

158 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Ansible allows you to deploy and configure using the same tool, so you would likely reuse groups and just keep the
OS configuration in separate playbooks from the app deployment.

Staging vs Production

As also mentioned above, a good way to keep your staging (or testing) and production environments separate is to use
a separate inventory file for staging and production. This way you pick with -i what you are targeting. Keeping them
all in one file can lead to surprises!

Testing things in a staging environment before trying in production is always a great idea. Your environments need
not be the same size and you can use group variables to control the differences between those environments.

Rolling Updates

Understand the ‘serial’ keyword. If updating a webserver farm you really want to use it to control how many machines
you are updating at once in the batch.

See Delegation, Rolling Updates, and Local Actions.

Always Mention The State

The ‘state’ parameter is optional to a lot of modules. Whether ‘state=present’ or ‘state=absent’, it’s always best to
leave that parameter in your playbooks to make it clear, especially as some modules support additional states.

Group By Roles

We’re somewhat repeating ourselves with this tip, but it’s worth repeating. A system can be in multiple groups. See
Inventory and Patterns. Having groups named after things like webservers and dbservers is repeated in the examples
because it’s a very powerful concept.

This allows playbooks to target machines based on role, as well as to assign role specific variables using the group
variable system.

See Playbook Roles and Include Statements.

Operating System and Distribution Variance

When dealing with a parameter that is different between two different operating systems, a great way to handle this is
by using the group_by module.

This makes a dynamic group of hosts matching certain criteria, even if that group is not defined in the inventory file:

talk to all hosts just so we can learn about them
- hosts: all

tasks:
- group_by: key=os_{{ ansible_distribution }}

now just on the CentOS hosts...

- hosts: os_CentOS
gather_facts: False

1.3. Playbooks 159

Ansible 2.2 Documentation, 2.4

tasks:
- # tasks that only happen on CentOS go here

This will throw all systems into a dynamic group based on the operating system name.

If group-specific settings are needed, this can also be done. For example:

file: group_vars/all
asdf: 10

file: group_vars/os_CentOS
asdf: 42

In the above example, CentOS machines get the value of ‘42’ for asdf, but other machines get ‘10’. This can be used
not only to set variables, but also to apply certain roles to only certain systems.

Alternatively, if only variables are needed:

- hosts: all
tasks:
- include_vars: "os_{{ ansible_distribution }}.yml"
- debug: var=asdf

This will pull in variables based on the OS name.

Bundling Ansible Modules With Playbooks

If a playbook has a ”./library” directory relative to its YAML file, this directory can be used to add ansible modules
that will automatically be in the ansible module path. This is a great way to keep modules that go with a playbook
together. This is shown in the directory structure example at the start of this section.

Whitespace and Comments

Generous use of whitespace to break things up, and use of comments (which start with ‘#’), is encouraged.

Always Name Tasks

It is possible to leave off the ‘name’ for a given task, though it is recommended to provide a description about why
something is being done instead. This name is shown when the playbook is run.

Keep It Simple

When you can do something simply, do something simply. Do not reach to use every feature of Ansible together, all
at once. Use what works for you. For example, you will probably not need vars, vars_files, vars_prompt
and --extra-vars all at once, while also using an external inventory file.

If something feels complicated, it probably is, and may be a good opportunity to simplify things.

160 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Version Control

Use version control. Keep your playbooks and inventory file in git (or another version control system), and commit
when you make changes to them. This way you have an audit trail describing when and why you changed the rules
that are automating your infrastructure.

Variables and Vaults

For general maintenance, it is often easier to use grep, or similar tools, to find variables in your Ansible setup. Since
vaults obscure these variables, it is best to work with a layer of indirection. When running a playbook, Ansible finds
the variables in the unencrypted file and all sensitive variables come from the encrypted file.

A best practice approach for this is to start with a group_vars/ subdirectory named after the group. Inside of this
subdirectory, create two files named vars and vault. Inside of the vars file, define all of the variables needed,
including any sensitive ones. Next, copy all of the sensitive variables over to the vault file and prefix these variables
with vault_. You should adjust the variables in the vars file to point to the matching vault_ variables and ensure
that the vault file is vault encrypted.

This best practice has no limit on the amount of variable and vault files or their names.

:

YAML Syntax Learn about YAML syntax

Playbooks Review the basic playbook features

About Modules Learn about available modules

Developing Modules Learn how to extend Ansible by writing your own modules

Patterns Learn about how to select hosts

GitHub examples directory Complete playbook files from the github project source

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

Playbooks: Special Topics

Here are some playbook features that not everyone may need to learn, but can be quite useful for particular applications.
Browsing these topics is recommended as you may find some useful tips here, but feel free to learn the basics of Ansible
first and adopt these only if they seem relevant or useful to your environment.

Become (Privilege Escalation)

Ansible can use existing privilege escalation systems to allow a user to execute tasks as another.

Topics

• Become (Privilege Escalation)

– Become

* Directives

* Connection variables

1.4. Playbooks: Special Topics 161

https://github.com/ansible/ansible-examples
http://groups.google.com/group/ansible-project

Ansible 2.2 Documentation, 2.4

* Command line options

* For those from Pre 1.9 , sudo and su still work!

* Limitations

· Becoming an Unprivileged User

· Connection Plugin Support

· Only one method may be enabled per host

· Can’t limit escalation to certain commands

Become

Ansible allows you to ‘become’ another user, different from the user that logged into the machine (remote user). This
is done using existing privilege escalation tools, which you probably already use or have configured, like sudo, su,
pfexec, doas, pbrun, dzdo, ksu and others.

: Before 1.9 Ansible mostly allowed the use of sudo and a limited use of su to allow a login/remote user to become
a different user and execute tasks, create resources with the 2nd user’s permissions. As of 1.9 become supersedes
the old sudo/su, while still being backwards compatible. This new system also makes it easier to add other privilege
escalation tools like pbrun (Powerbroker), pfexec, dzdo (Centrify), and others.

: Become vars & directives are independent, i.e. setting become_user does not set become.

Directives

These can be set from play to task level, but are overridden by connection variables as they can be host specific.

become set to ‘true’/’yes’ to activate privilege escalation.

become_user set to user with desired privileges — the user you ‘become’, NOT the user you login as. Does NOT
imply become: yes, to allow it to be set at host level.

become_method (at play or task level) overrides the default method set in ansible.cfg, set to
sudo/su/pbrun/pfexec/doas/dzdo/ksu

become_flags (at play or task level) permit to use specific flags for the tasks or role. One common use is to change
user to nobody when the shell is set to no login. Added in Ansible 2.2.

For example, to manage a system service (which requires root privileges) when connected as a non-root user (this
takes advantage of the fact that the default value of become_user is root):

- name: Ensure the httpd service is running
service:
name: httpd
state: started

become: true

To run a command as the apache user:

162 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- name: Run a command as the apache user
command: somecommand
become: true
become_user: apache

To do something as the nobody user when the shell is nologin:

- name: Run a command as nobody
command: somecommand
become: true
become_method: su
become_user: nobody
become_flags: '-s /bin/sh'

Connection variables

Each allows you to set an option per group and/or host, these are normally defined in inventory but can be used as
normal variables.

ansible_become equivalent of the become directive, decides if privilege escalation is used or not.

ansible_become_method allows to set privilege escalation method

ansible_become_user allows to set the user you become through privilege escalation, does not imply ansi-
ble_become: True

ansible_become_pass allows you to set the privilege escalation password

For example, if you want to run all tasks as root on a server named webserver, but you can only connect as the
manager user, you could use an inventory entry like this:

webserver ansible_user=manager ansible_become=true

Command line options

--ask-become-pass, -K ask for privilege escalation password, does not imply become will be used

--become, -b run operations with become (no password implied)

--become-method=BECOME_METHOD privilege escalation method to use (default=sudo), valid
choices: [sudo | su | pbrun | pfexec | doas | dzdo | ksu]

--become-user=BECOME_USER run operations as this user (default=root), does not imply –
become/-b

For those from Pre 1.9 , sudo and su still work!

For those using old playbooks will not need to be changed, even though they are deprecated, sudo and su directives,
variables and options will continue to work. It is recommended to move to become as they may be retired at one point.
You cannot mix directives on the same object (become and sudo) though, Ansible will complain if you try to.

Become will default to using the old sudo/su configs and variables if they exist, but will override them if you specify
any of the new ones.

1.4. Playbooks: Special Topics 163

Ansible 2.2 Documentation, 2.4

Limitations

Although privilege escalation is mostly intuitive, there are a few limitations on how it works. Users should be aware
of these to avoid surprises.

Becoming an Unprivileged User

Ansible 2.0.x and below has a limitation with regards to becoming an unprivileged user that can be a security risk if
users are not aware of it. Ansible modules are executed on the remote machine by first substituting the parameters into
the module file, then copying the file to the remote machine, and finally executing it there.

Everything is fine if the module file is executed without using become, when the become_user is root, or when
the connection to the remote machine is made as root. In these cases the module file is created with permissions that
only allow reading by the user and root.

The problem occurs when the become_user is an unprivileged user. Ansible 2.0.x and below make the module file
world readable in this case, as the module file is written as the user that Ansible connects as, but the file needs to be
readable by the user Ansible is set to become.

: In Ansible 2.1, this window is further narrowed: If the connection is made as a privileged user (root), then Ansible
2.1 and above will use chown to set the file’s owner to the unprivileged user being switched to. This means both the
user making the connection and the user being switched to via become must be unprivileged in order to trigger this
problem.

If any of the parameters passed to the module are sensitive in nature, then those pieces of data are located in a world
readable module file for the duration of the Ansible module execution. Once the module is done executing, Ansible
will delete the temporary file. If you trust the client machines then there’s no problem here. If you do not trust the
client machines then this is a potential danger.

Ways to resolve this include:

• Use pipelining. When pipelining is enabled, Ansible doesn’t save the module to a temporary file on the client.
Instead it pipes the module to the remote python interpreter’s stdin. Pipelining does not work for non-python
modules.

• (Available in Ansible 2.1) Install POSIX.1e filesystem acl support on the managed host. If the temporary
directory on the remote host is mounted with POSIX acls enabled and the setfacl tool is in the remote PATH
then Ansible will use POSIX acls to share the module file with the second unprivileged user instead of having
to make the file readable by everyone.

• Don’t perform an action on the remote machine by becoming an unprivileged user. Temporary files are protected
by UNIX file permissions when you become root or do not use become. In Ansible 2.1 and above, UNIX file
permissions are also secure if you make the connection to the managed machine as root and then use become
to an unprivileged account.

: Although the Solaris ZFS filesystem has filesystem ACLs, the ACLs are not POSIX.1e filesystem acls (they are
NFSv4 ACLs instead). Ansible cannot use these ACLs to manage its temp file permissions so you may have to
resort to allow_world_readable_tmpfiles if the remote machines use ZFS.

2.1 .

In addition to the additional means of doing this securely, Ansible 2.1 also makes it harder to unknowingly do this
insecurely. Whereas in Ansible 2.0.x and below, Ansible will silently allow the insecure behaviour if it was un-
able to find another way to share the files with the unprivileged user, in Ansible 2.1 and above Ansible defaults

164 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

to issuing an error if it can’t do this securely. If you can’t make any of the changes above to resolve the prob-
lem, and you decide that the machine you’re running on is secure enough for the modules you want to run there to
be world readable, you can turn on allow_world_readable_tmpfiles in the ansible.cfg file. Setting
allow_world_readable_tmpfiles will change this from an error into a warning and allow the task to run as
it did prior to 2.1.

Connection Plugin Support

Privilege escalation methods must also be supported by the connection plugin used. Most connection plugins will
warn if they do not support become. Some will just ignore it as they always run as root (jail, chroot, etc).

Only one method may be enabled per host

Methods cannot be chained. You cannot use sudo /bin/su - to become a user, you need to have privileges to
run the command as that user in sudo or be able to su directly to it (the same for pbrun, pfexec or other supported
methods).

Can’t limit escalation to certain commands

Privilege escalation permissions have to be general. Ansible does not always use a specific command to do some-
thing but runs modules (code) from a temporary file name which changes every time. If you have ‘/sbin/service’ or
‘/bin/chmod’ as the allowed commands this will fail with ansible as those paths won’t match with the temporary file
that ansible creates to run the module.

:

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Accelerated Mode

1.3 .

: Accelerated mode is deprecated. Consider using SSH with ControlPersist and pipelining enabled in-
stead. This feature will be removed in a future release. Deprecation warnings can be disabled by setting
deprecation_warnings=False in ansible.cfg.

You Might Not Need This!

Are you running Ansible 1.5 or later? If so, you may not need accelerated mode due to a new feature called “SSH
pipelining” and should read the pipelining section of the documentation.

For users on 1.5 and later, accelerated mode only makes sense if you (A) are managing from an Enterprise Linux 6 or
earlier host and still are on paramiko, or (B) can’t enable TTYs with sudo as described in the pipelining docs.

If you can use pipelining, Ansible will reduce the amount of files transferred over the wire, making everything much
more efficient, and performance will be on par with accelerated mode in nearly all cases, possibly excluding very large
file transfer. Because less moving parts are involved, pipelining is better than accelerated mode for nearly all use cases.

Accelerated moded remains around in support of EL6 control machines and other constrained environments.

1.4. Playbooks: Special Topics 165

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Accelerated Mode Details

While OpenSSH using the ControlPersist feature is quite fast and scalable, there is a certain small amount of overhead
involved in using SSH connections. While many people will not encounter a need, if you are running on a platform
that doesn’t have ControlPersist support (such as an EL6 control machine), you’ll probably be even more interested in
tuning options.

Accelerated mode is there to help connections work faster, but still uses SSH for initial secure key exchange. There is
no additional public key infrastructure to manage, and this does not require things like NTP or even DNS.

Accelerated mode can be anywhere from 2-6x faster than SSH with ControlPersist enabled, and 10x faster than
paramiko.

Accelerated mode works by launching a temporary daemon over SSH. Once the daemon is running, Ansible will
connect directly to it via a socket connection. Ansible secures this communication by using a temporary AES key that
is exchanged during the SSH connection (this key is different for every host, and is also regenerated periodically).

By default, Ansible will use port 5099 for the accelerated connection, though this is configurable. Once running, the
daemon will accept connections for 30 minutes, after which time it will terminate itself and need to be restarted over
SSH.

In order to use accelerated mode, simply add accelerate: true to your play:

- hosts: all
accelerate: true

tasks:

- name: some task
command: echo {{ item }}
with_items:
- foo
- bar
- baz

If you wish to change the port Ansible will use for the accelerated connection, just add the accelerate_port option:

- hosts: all
accelerate: true
default port is 5099
accelerate_port: 10000

The accelerate_port option can also be specified in the environment variable ACCELERATE_PORT, or in your ansi-
ble.cfg configuration:

[accelerate]
accelerate_port = 5099

As noted above, accelerated mode also supports running tasks via sudo, however there are two important caveats:

• You must remove requiretty from your sudoers options.

• Prompting for the sudo password is not yet supported, so the NOPASSWD option is required for sudo’ed
commands.

166 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

As of Ansible version 1.6, you can also allow the use of multiple keys for connections from multiple Ansible manage-
ment nodes. To do so, add the following option to your ansible.cfg configuration:

accelerate_multi_key = yes

When enabled, the daemon will open a UNIX socket file (by default $ANSIBLE_REMOTE_TEMP/.ansible-
accelerate/.local.socket). New connections over SSH can use this socket file to upload new keys to the daemon.

Asynchronous Actions and Polling

By default tasks in playbooks block, meaning the connections stay open until the task is done on each node. This may
not always be desirable, or you may be running operations that take longer than the SSH timeout.

The easiest way to do this is to kick them off all at once and then poll until they are done.

You will also want to use asynchronous mode on very long running operations that might be subject to timeout.

To launch a task asynchronously, specify its maximum runtime and how frequently you would like to poll for status.
The default poll value is 10 seconds if you do not specify a value for poll:

- hosts: all
remote_user: root

tasks:

- name: simulate long running op (15 sec), wait for up to 45 sec, poll every 5 sec
command: /bin/sleep 15
async: 45
poll: 5

: There is no default for the async time limit. If you leave off the ‘async’ keyword, the task runs synchronously,
which is Ansible’s default.

Alternatively, if you do not need to wait on the task to complete, you may “fire and forget” by specifying a poll value
of 0:

- hosts: all
remote_user: root

tasks:

- name: simulate long running op, allow to run for 45 sec, fire and forget
command: /bin/sleep 15
async: 45
poll: 0

: You shouldn’t “fire and forget” with operations that require exclusive locks, such as yum transactions, if you expect
to run other commands later in the playbook against those same resources.

1.4. Playbooks: Special Topics 167

Ansible 2.2 Documentation, 2.4

: Using a higher value for --forks will result in kicking off asynchronous tasks even faster. This also increases the
efficiency of polling.

If you would like to perform a variation of the “fire and forget” where you “fire and forget, check on it later” you can
perform a task similar to the following:

Requires ansible 1.8+
- name: 'YUM - fire and forget task'

yum: name=docker-io state=installed
async: 1000
poll: 0
register: yum_sleeper

- name: 'YUM - check on fire and forget task'
async_status: jid={{ yum_sleeper.ansible_job_id }}
register: job_result
until: job_result.finished
retries: 30

: If the value of async: is not high enough, this will cause the “check on it later” task to fail because the temporary
status file that the async_status: is looking for will not have been written or no longer exist

:

Playbooks An introduction to playbooks

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Check Mode (“Dry Run”)

1.1 .

Topics

• Check Mode (“Dry Run”)

– Enabling or disabling check mode for tasks

– Information about check mode in variables

– Showing Differences with --diff

When ansible-playbook is executed with --check it will not make any changes on remote systems. Instead, any
module instrumented to support ‘check mode’ (which contains most of the primary core modules, but it is not required
that all modules do this) will report what changes they would have made rather than making them. Other modules that
do not support check mode will also take no action, but just will not report what changes they might have made.

Check mode is just a simulation, and if you have steps that use conditionals that depend on the results of prior
commands, it may be less useful for you. However it is great for one-node-at-time basic configuration management
use cases.

168 Chapter 1. About Ansible

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Example:

ansible-playbook foo.yml --check

Enabling or disabling check mode for tasks

2.2 .

Sometimes you may want to modify the check mode behavior of individual tasks. This is done via the check_mode
option, which can be added to tasks.

There are two options:

1. Force a task to run in check mode, even when the playbook is called without --check. This is called
check_mode: yes.

2. Force a task to run in normal mode and make changes to the system, even when the playbook is called with
--check. This is called check_mode: no.

: Prior to version 2.2 only the the equivalent of check_mode: no existed. The notation for that was
always_run: yes.

Instead of yes/no you can use a Jinja2 expression, just like the when clause.

Example:

tasks:

- name: this task will make changes to the system even in check mode
command: /something/to/run --even-in-check-mode
check_mode: no

- name: this task will always run under checkmode and not change the system
lineinfile: line="important config" dest=/path/to/myconfig.conf state=present
check_mode: yes

Running single tasks with check_mode: yes can be useful to write tests for ansible modules, either to test the
module itself or to the the conditions under which a module would make changes. With register (see Conditionals)
you can check the potential changes.

Information about check mode in variables

2.1 .

If you want to skip, or ignore errors on some tasks in check mode you can use a boolean magic variable
ansible_check_mode which will be set to True during check mode.

Example:

tasks:

- name: this task will be skipped in check mode
git: repo=ssh://git@github.com/mylogin/hello.git dest=/home/mylogin/hello
when: not ansible_check_mode

- name: this task will ignore errors in check mode

1.4. Playbooks: Special Topics 169

Ansible 2.2 Documentation, 2.4

git: repo=ssh://git@github.com/mylogin/hello.git dest=/home/mylogin/hello
ignore_errors: "{{ ansible_check_mode }}"

Showing Differences with --diff

1.1 .

The --diff option to ansible-playbook works great with --check (detailed above) but can also be used by itself.
When this flag is supplied, if any templated files on the remote system are changed, and the ansible-playbook CLI will
report back the textual changes made to the file (or, if used with --check, the changes that would have been made).
Since the diff feature produces a large amount of output, it is best used when checking a single host at a time, like so:

ansible-playbook foo.yml --check --diff --limit foo.example.com

Playbook Debugger

Topics

• Playbook Debugger

– Available Commands

* p task/vars/host/result

* task.args[key] = value

* vars[key] = value

* r(edo)

* c(ontinue)

* q(uit)

In 2.1 we added a debug strategy. This strategy enables you to invoke a debugger when a task has failed. You have
access to all of the features of the debugger in the context of the failed task. You can then, for example, check or set
the value of variables, update module arguments, and re-run the failed task with the new variables and arguments to
help resolve the cause of the failure.

To use the debug strategy, change the strategy attribute like this:

- hosts: test
strategy: debug
tasks:
...

For example, run the playbook below:

- hosts: test
strategy: debug
gather_facts: no
vars:
var1: value1

tasks:
- name: wrong variable

ping: data={{ wrong_var }}

170 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

The debugger is invoked since the wrong_var variable is undefined.

Let’s change the module’s arguments and run the task again

PLAY ***

TASK [wrong variable] **
fatal: [192.0.2.10]: FAILED! => {"failed": true, "msg": "ERROR! 'wrong_var' is
→˓undefined"}
Debugger invoked
(debug) p result
{'msg': u"ERROR! 'wrong_var' is undefined", 'failed': True}
(debug) p task.args
{u'data': u'{{ wrong_var }}'}
(debug) task.args['data'] = '{{ var1 }}'
(debug) p task.args
{u'data': '{{ var1 }}'}
(debug) redo
ok: [192.0.2.10]

PLAY RECAP ***
192.0.2.10 : ok=1 changed=0 unreachable=0 failed=0

This time, the task runs successfully!

Available Commands

p task/vars/host/result

Print values used to execute a module:

(debug) p task
TASK: install package
(debug) p task.args
{u'name': u'{{ pkg_name }}'}
(debug) p vars
{u'ansible_all_ipv4_addresses': [u'192.0.2.10'],
u'ansible_architecture': u'x86_64',
...

}
(debug) p vars['pkg_name']
u'bash'
(debug) p host
192.0.2.10
(debug) p result
{'_ansible_no_log': False,
'changed': False,
u'failed': True,
...
u'msg': u"No package matching 'not_exist' is available"}

task.args[key] = value

Update module’s argument.

1.4. Playbooks: Special Topics 171

Ansible 2.2 Documentation, 2.4

If you run a playbook like this:

- hosts: test
strategy: debug
gather_facts: yes
vars:
pkg_name: not_exist

tasks:
- name: install package

apt: name={{ pkg_name }}

Debugger is invoked due to wrong package name, so let’s fix the module’s args:

(debug) p task.args
{u'name': u'{{ pkg_name }}'}
(debug) task.args['name'] = 'bash'
(debug) p task.args
{u'name': 'bash'}
(debug) redo

Then the task runs again with new args.

vars[key] = value

Update vars.

Let’s use the same playbook above, but fix vars instead of args:

(debug) p vars['pkg_name']
u'not_exist'
(debug) vars['pkg_name'] = 'bash'
(debug) p vars['pkg_name']
'bash'
(debug) redo

Then the task runs again with new vars.

r(edo)

Run the task again.

c(ontinue)

Just continue.

q(uit)

Quit from the debugger. The playbook execution is aborted.

:

Playbooks An introduction to playbooks

User Mailing List Have a question? Stop by the google group!

172 Chapter 1. About Ansible

http://groups.google.com/group/ansible-devel

Ansible 2.2 Documentation, 2.4

irc.freenode.net #ansible IRC chat channel

Delegation, Rolling Updates, and Local Actions

Topics

• Delegation, Rolling Updates, and Local Actions

– Rolling Update Batch Size

– Maximum Failure Percentage

– Delegation

– Delegated facts

– Run Once

– Local Playbooks

– Interrupt execution on any error

Being designed for multi-tier deployments since the beginning, Ansible is great at doing things on one host on behalf
of another, or doing local steps with reference to some remote hosts.

This in particular is very applicable when setting up continuous deployment infrastructure or zero downtime rolling
updates, where you might be talking with load balancers or monitoring systems.

Additional features allow for tuning the orders in which things complete, and assigning a batch window size for how
many machines to process at once during a rolling update.

This section covers all of these features. For examples of these items in use, please see the ansible-examples repository.
There are quite a few examples of zero-downtime update procedures for different kinds of applications.

You should also consult the About Modules section, various modules like ‘ec2_elb’, ‘nagios’, and ‘bigip_pool’, and
‘netscaler’ dovetail neatly with the concepts mentioned here.

You’ll also want to read up on Playbook Roles and Include Statements, as the ‘pre_task’ and ‘post_task’ concepts are
the places where you would typically call these modules.

Rolling Update Batch Size

0.7 .

By default, Ansible will try to manage all of the machines referenced in a play in parallel. For a rolling updates use
case, you can define how many hosts Ansible should manage at a single time by using the ‘’serial” keyword:

- name: test play
hosts: webservers
serial: 3

In the above example, if we had 100 hosts, 3 hosts in the group ‘webservers’ would complete the play completely
before moving on to the next 3 hosts.

The ‘’serial” keyword can also be specified as a percentage in Ansible 1.8 and later, which will be applied to the total
number of hosts in a play, in order to determine the number of hosts per pass:

1.4. Playbooks: Special Topics 173

http://irc.freenode.net
https://github.com/ansible/ansible-examples/

Ansible 2.2 Documentation, 2.4

- name: test play
hosts: webservers
serial: "30%"

If the number of hosts does not divide equally into the number of passes, the final pass will contain the remainder.

As of Ansible 2.2, the batch sizes can be specified as a list, as follows:

- name: test play
hosts: webservers
serial:
- 1
- 5
- 10

In the above example, the first batch would contain a single host, the next would contain 5 hosts, and (if there are any
hosts left), every following batch would contain 10 hosts until all available hosts are used.

It is also possible to list multiple batch sizes as percentages:

- name: test play
hosts: webservers
serial:
- "10%"
- "20%"
- "100%"

You can also mix and match the values:

- name: test play
hosts: webservers
serial:
- 1
- 5
- "20%"

: No matter how small the percentage, the number of hosts per pass will always be 1 or greater.

Maximum Failure Percentage

1.3 .

By default, Ansible will continue executing actions as long as there are hosts in the group that have not yet failed. In
some situations, such as with the rolling updates described above, it may be desirable to abort the play when a certain
threshold of failures have been reached. To achieve this, as of version 1.3 you can set a maximum failure percentage
on a play as follows:

- hosts: webservers
max_fail_percentage: 30
serial: 10

In the above example, if more than 3 of the 10 servers in the group were to fail, the rest of the play would be aborted.

174 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

: The percentage set must be exceeded, not equaled. For example, if serial were set to 4 and you wanted the task to
abort when 2 of the systems failed, the percentage should be set at 49 rather than 50.

Delegation

0.7 .

This isn’t actually rolling update specific but comes up frequently in those cases.

If you want to perform a task on one host with reference to other hosts, use the ‘delegate_to’ keyword on a task. This
is ideal for placing nodes in a load balanced pool, or removing them. It is also very useful for controlling outage
windows. Using this with the ‘serial’ keyword to control the number of hosts executing at one time is also a good idea:

- hosts: webservers
serial: 5

tasks:

- name: take out of load balancer pool
command: /usr/bin/take_out_of_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1

- name: actual steps would go here
yum: name=acme-web-stack state=latest

- name: add back to load balancer pool
command: /usr/bin/add_back_to_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1

These commands will run on 127.0.0.1, which is the machine running Ansible. There is also a shorthand syntax that
you can use on a per-task basis: ‘local_action’. Here is the same playbook as above, but using the shorthand syntax
for delegating to 127.0.0.1:

...

tasks:

- name: take out of load balancer pool
local_action: command /usr/bin/take_out_of_pool {{ inventory_hostname }}

...

- name: add back to load balancer pool
local_action: command /usr/bin/add_back_to_pool {{ inventory_hostname }}

A common pattern is to use a local action to call ‘rsync’ to recursively copy files to the managed servers. Here is an
example:

...

tasks:

1.4. Playbooks: Special Topics 175

Ansible 2.2 Documentation, 2.4

- name: recursively copy files from management server to target
local_action: command rsync -a /path/to/files {{ inventory_hostname }}:/path/to/

→˓target/

Note that you must have passphrase-less SSH keys or an ssh-agent configured for this to work, otherwise rsync will
need to ask for a passphrase.

The ansible_host variable (ansible_ssh_host in 1.x or specific to ssh/paramiko plugins) reflects the host a task is
delegated to.

Delegated facts

2.0 .

By default, any fact gathered by a delegated task are assigned to the inventory_hostname (the current host) instead of
the host which actually produced the facts (the delegated to host). In 2.0, the directive delegate_facts may be set to
True to assign the task’s gathered facts to the delegated host instead of the current one.:

- hosts: app_servers
tasks:
- name: gather facts from db servers

setup:
delegate_to: "{{item}}"
delegate_facts: True
with_items: "{{groups['dbservers']}}"

The above will gather facts for the machines in the dbservers group and assign the facts to those machines and not
to app_servers. This way you can lookup hostvars[’dbhost1’][’default_ipv4’][’address’] even though dbservers were
not part of the play, or left out by using –limit.

Run Once

1.7 .

In some cases there may be a need to only run a task one time and only on one host. This can be achieved by
configuring “run_once” on a task:

...

tasks:

...

- command: /opt/application/upgrade_db.py
run_once: true

...

This can be optionally paired with “delegate_to” to specify an individual host to execute on:

- command: /opt/application/upgrade_db.py
run_once: true
delegate_to: web01.example.org

176 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

When “run_once” is not used with “delegate_to” it will execute on the first host, as defined by inventory, in the group(s)
of hosts targeted by the play - e.g. webservers[0] if the play targeted “hosts: webservers”.

This approach is similar to applying a conditional to a task such as:

- command: /opt/application/upgrade_db.py
when: inventory_hostname == webservers[0]

: When used together with “serial”, tasks marked as “run_once” will be run on one host in each serial batch. If
it’s crucial that the task is run only once regardless of “serial” mode, use when: inventory_hostname ==
ansible_play_hosts[0] construct.

Local Playbooks

It may be useful to use a playbook locally, rather than by connecting over SSH. This can be useful for assuring the
configuration of a system by putting a playbook in a crontab. This may also be used to run a playbook inside an OS
installer, such as an Anaconda kickstart.

To run an entire playbook locally, just set the “hosts:” line to “hosts: 127.0.0.1” and then run the playbook like so:

ansible-playbook playbook.yml --connection=local

Alternatively, a local connection can be used in a single playbook play, even if other plays in the playbook use the
default remote connection type:

- hosts: 127.0.0.1
connection: local

Interrupt execution on any error

With the ‘’any_errors_fatal” option, any failure on any host in a multi-host play will be treated as fatal and Ansible
will exit immediately without waiting for the other hosts.

Sometimes ‘’serial” execution is unsuitable; the number of hosts is unpredictable (because of dynamic inventory) and
speed is crucial (simultaneous execution is required), but all tasks must be 100% successful to continue playbook
execution.

For example, consider a service located in many datacenters with some load balancers to pass traffic from users to the
service. There is a deploy playbook to upgrade service deb-packages. The playbook has the stages:

• disable traffic on load balancers (must be turned off simultaneously)

• gracefully stop the service

• upgrade software (this step includes tests and starting the service)

• enable traffic on the load balancers (which should be turned on simultaneously)

The service can’t be stopped with “alive” load balancers; they must be disabled first. Because of this, the second stage
can’t be played if any server failed in the first stage.

For datacenter “A”, the playbook can be written this way:

- hosts: load_balancers_dc_a

any_errors_fatal: True

1.4. Playbooks: Special Topics 177

Ansible 2.2 Documentation, 2.4

tasks:
- name: 'shutting down datacenter [A]'
command: /usr/bin/disable-dc

- hosts: frontends_dc_a
tasks:
- name: 'stopping service'
command: /usr/bin/stop-software

- name: 'updating software'
command: /usr/bin/upgrade-software

- hosts: load_balancers_dc_a
tasks:
- name: 'Starting datacenter [A]'
command: /usr/bin/enable-dc

In this example Ansible will start the software upgrade on the front ends only if all of the load balancers are successfully
disabled.

:

Playbooks An introduction to playbooks

Ansible Examples on GitHub Many examples of full-stack deployments

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Setting the Environment (and Working With Proxies)

1.1 .

It is quite possible that you may need to get package updates through a proxy, or even get some package updates
through a proxy and access other packages not through a proxy. Or maybe a script you might wish to call may also
need certain environment variables set to run properly.

Ansible makes it easy for you to configure your environment by using the ‘environment’ keyword. Here is an example:

- hosts: all
remote_user: root

tasks:

- apt: name=cobbler state=installed
environment:

http_proxy: http://proxy.example.com:8080

The environment can also be stored in a variable, and accessed like so:

- hosts: all
remote_user: root

here we make a variable named "proxy_env" that is a dictionary
vars:
proxy_env:

http_proxy: http://proxy.example.com:8080

tasks:

178 Chapter 1. About Ansible

https://github.com/ansible/ansible-examples
http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

- apt: name=cobbler state=installed
environment: "{{proxy_env}}"

You can also use it at a play level:

- hosts: testhost

roles:
- php
- nginx

environment:
http_proxy: http://proxy.example.com:8080

While just proxy settings were shown above, any number of settings can be supplied. The most logical place to define
an environment hash might be a group_vars file, like so:

file: group_vars/boston

ntp_server: ntp.bos.example.com
backup: bak.bos.example.com
proxy_env:

http_proxy: http://proxy.bos.example.com:8080
https_proxy: http://proxy.bos.example.com:8080

Working With Language-Specific Version Managers

Some language-specific version managers (such as rbenv and nvm) require environment variables be set while these
tools are in use. When using these tools manually, they usually require sourcing some environment variables via a
script or lines added to your shell configuration file. In Ansible, you can instead use the environment directive:

A playbook demonstrating a common npm workflow:
- Check for package.json in the application directory
- If package.json exists:
* Run npm prune
* Run npm install

- hosts: application
become: false

vars:
node_app_dir: /var/local/my_node_app

environment:
NVM_DIR: /var/local/nvm
PATH: /var/local/nvm/versions/node/v4.2.1/bin:{{ ansible_env.PATH }}

tasks:
- name: check for package.json
stat:

path: '{{ node_app_dir }}/package.json'
register: packagejson

1.4. Playbooks: Special Topics 179

Ansible 2.2 Documentation, 2.4

- name: npm prune
command: npm prune
args:

chdir: '{{ node_app_dir }}'
when: packagejson.stat.exists

- name: npm install
npm:

path: '{{ node_app_dir }}'
when: packagejson.stat.exists

You might also want to simply specify the environment for a single task:

- name: install ruby 2.3.1

command: rbenv install {{ rbenv_ruby_version }}
args:
creates: '{{ rbenv_root }}/versions/{{ rbenv_ruby_version }}/bin/ruby'

vars:
rbenv_root: /usr/local/rbenv
rbenv_ruby_version: 2.3.1

environment:
CONFIGURE_OPTS: '--disable-install-doc'
RBENV_ROOT: '{{ rbenv_root }}'
PATH: '{{ rbenv_root }}/bin:{{ rbenv_root }}/shims:{{ rbenv_plugins }}/ruby-build/

→˓bin:{{ ansible_env.PATH }}'

: environment: is not currently supported for Windows targets

:

Playbooks An introduction to playbooks

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Error Handling In Playbooks

Topics

• Error Handling In Playbooks

– Ignoring Failed Commands

– Resetting Unreachable Hosts

– Handlers and Failure

– Controlling What Defines Failure

– Overriding The Changed Result

– Aborting the play

180 Chapter 1. About Ansible

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Ansible normally has defaults that make sure to check the return codes of commands and modules and it fails fast –
forcing an error to be dealt with unless you decide otherwise.

Sometimes a command that returns different than 0 isn’t an error. Sometimes a command might not always need to
report that it ‘changed’ the remote system. This section describes how to change the default behavior of Ansible for
certain tasks so output and error handling behavior is as desired.

Ignoring Failed Commands

0.6 .

Generally playbooks will stop executing any more steps on a host that has a task fail. Sometimes, though, you want to
continue on. To do so, write a task that looks like this:

- name: this will not be counted as a failure
command: /bin/false
ignore_errors: yes

Note that the above system only governs the return value of failure of the particular task, so if you have an undefined
variable used or a syntax error, it will still raise an error that users will need to address. Note that this will not prevent
failures on connection or execution issues. This feature only works when the task must be able to run and return a
value of ‘failed’.

Resetting Unreachable Hosts

2.2 .

Connection failures set hosts as ‘UNREACHABLE’, which will remove them from the list of active hosts for the run.
To recover from these issues you can use meta: clear_host_errors to have all currently flagged hosts reactivated, so
subsequent tasks can try to use them again.

Handlers and Failure

1.9.1 .

When a task fails on a host, handlers which were previously notified will not be run on that host. This can lead to cases
where an unrelated failure can leave a host in an unexpected state. For example, a task could update a configuration
file and notify a handler to restart some service. If a task later on in the same play fails, the service will not be restarted
despite the configuration change.

You can change this behavior with the --force-handlers command-line option, or by including
force_handlers: True in a play, or force_handlers = True in ansible.cfg. When handlers are forced,
they will run when notified even if a task fails on that host. (Note that certain errors could still prevent the handler
from running, such as a host becoming unreachable.)

Controlling What Defines Failure

1.4 .

Suppose the error code of a command is meaningless and to tell if there is a failure what really matters is the output of
the command, for instance if the string “FAILED” is in the output.

Ansible in 1.4 and later provides a way to specify this behavior as follows:

1.4. Playbooks: Special Topics 181

Ansible 2.2 Documentation, 2.4

- name: Fail task when the command error output prints FAILED
command: /usr/bin/example-command -x -y -z
register: command_result
failed_when: "'FAILED' in command_result.stderr"

or based on the return code:

- name: Fail task when both files are identical
raw: diff foo/file1 bar/file2
register: diff_cmd
failed_when: diff_cmd.rc == 0 or diff_cmd.rc >= 2

In previous version of Ansible, this can be still be accomplished as follows:

- name: this command prints FAILED when it fails
command: /usr/bin/example-command -x -y -z
register: command_result
ignore_errors: True

- name: fail the play if the previous command did not succeed
fail: msg="the command failed"
when: "'FAILED' in command_result.stderr"

Overriding The Changed Result

1.3 .

When a shell/command or other module runs it will typically report “changed” status based on whether it thinks it
affected machine state.

Sometimes you will know, based on the return code or output that it did not make any changes, and wish to override
the “changed” result such that it does not appear in report output or does not cause handlers to fire:

tasks:

- shell: /usr/bin/billybass --mode="take me to the river"
register: bass_result
changed_when: "bass_result.rc != 2"

this will never report 'changed' status
- shell: wall 'beep'
changed_when: False

Aborting the play

Sometimes it’s desirable to abort the entire play on failure, not just skip remaining tasks for a host.

The any_errors_fatal play option will mark all hosts as failed if any fails, causing an immediate abort:

- hosts: somehosts
any_errors_fatal: true
roles:
- myrole

for finer-grained control max_fail_percentage can be used to abort the run after a given percentage of hosts has
failed.

182 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

:

Playbooks An introduction to playbooks

Best Practices Best practices in playbooks

Conditionals Conditional statements in playbooks

Variables All about variables

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Advanced Syntax

Topics

• Advanced Syntax

– YAML tags and Python types

* Unsafe or Raw Strings

This page describes advanced YAML syntax that enables you to have more control over the data placed in YAML files
used by Ansible.

YAML tags and Python types

The documentation covered here is an extension of the documentation that can be found in the PyYAML Documenta-
tion

Unsafe or Raw Strings

As of Ansible 2.0, there is an internal data type for declaring variable values as “unsafe”. This means that the data
held within the variables value should be treated as unsafe preventing unsafe character subsitition and information
disclosure.

Jinja2 contains functionality for escaping, or telling Jinja2 to not template data by means of functionality such as {%
raw %} ... {% endraw %}, however this uses a more comprehensive implementation to ensure that the value
is never templated.

Using YAML tags, you can also mark a value as “unsafe” by using the !unsafe tag such as:

my_unsafe_variable: !unsafe 'this variable has {{ characters that should not be
→˓treated as a jinja2 template'

In a playbook, this may look like:

hosts: all
vars:

my_unsafe_variable: !unsafe 'unsafe value'
tasks:

...

1.4. Playbooks: Special Topics 183

http://groups.google.com/group/ansible-devel
http://irc.freenode.net
http://pyyaml.org/wiki/PyYAMLDocumentation#YAMLtagsandPythontypes
http://pyyaml.org/wiki/PyYAMLDocumentation#YAMLtagsandPythontypes

Ansible 2.2 Documentation, 2.4

For complex variables such as hashes or arrays, !unsafe should be used on the individual elements such as:

my_unsafe_array:

- !unsafe 'unsafe element'
- 'safe element'

my_unsafe_hash:
unsafe_key: !unsafe 'unsafe value'

:

Variables All about variables

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Prompts

When running a playbook, you may wish to prompt the user for certain input, and can do so with the ‘vars_prompt’
section.

A common use for this might be for asking for sensitive data that you do not want to record.

This has uses beyond security, for instance, you may use the same playbook for all software releases and would prompt
for a particular release version in a push-script.

Here is a most basic example:

- hosts: all

remote_user: root

vars:
from: "camelot"

vars_prompt:
- name: "name"

prompt: "what is your name?"
- name: "quest"

prompt: "what is your quest?"
- name: "favcolor"

prompt: "what is your favorite color?"

: Prompts for individual vars_prompt variables will be skipped for any variable that is already defined through
the command line --extra-vars option, or when running from a non-interactive session (such as cron or Ansible
Tower). See _passing_variables_on_the_command_line in the /Variables/ chapter.

If you have a variable that changes infrequently, it might make sense to provide a default value that can be overridden.
This can be accomplished using the default argument:

vars_prompt:

- name: "release_version"
prompt: "Product release version"
default: "1.0"

184 Chapter 1. About Ansible

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

An alternative form of vars_prompt allows for hiding input from the user, and may later support some other options,
but otherwise works equivalently:

vars_prompt:

- name: "some_password"
prompt: "Enter password"
private: yes

- name: "release_version"
prompt: "Product release version"
private: no

If Passlib is installed, vars_prompt can also crypt the entered value so you can use it, for instance, with the user module
to define a password:

vars_prompt:

- name: "my_password2"
prompt: "Enter password2"
private: yes
encrypt: "sha512_crypt"
confirm: yes
salt_size: 7

You can use any crypt scheme supported by ‘Passlib’:

• des_crypt - DES Crypt

• bsdi_crypt - BSDi Crypt

• bigcrypt - BigCrypt

• crypt16 - Crypt16

• md5_crypt - MD5 Crypt

• bcrypt - BCrypt

• sha1_crypt - SHA-1 Crypt

• sun_md5_crypt - Sun MD5 Crypt

• sha256_crypt - SHA-256 Crypt

• sha512_crypt - SHA-512 Crypt

• apr_md5_crypt - Apache’s MD5-Crypt variant

• phpass - PHPass’ Portable Hash

• pbkdf2_digest - Generic PBKDF2 Hashes

• cta_pbkdf2_sha1 - Cryptacular’s PBKDF2 hash

• dlitz_pbkdf2_sha1 - Dwayne Litzenberger’s PBKDF2 hash

• scram - SCRAM Hash

• bsd_nthash - FreeBSD’s MCF-compatible nthash encoding

However, the only parameters accepted are ‘salt’ or ‘salt_size’. You can use your own salt using ‘salt’, or have one
generated automatically using ‘salt_size’. If nothing is specified, a salt of size 8 will be generated.

:

1.4. Playbooks: Special Topics 185

https://passlib.readthedocs.io/en/stable/

Ansible 2.2 Documentation, 2.4

Playbooks An introduction to playbooks

Conditionals Conditional statements in playbooks

Variables All about variables

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Tags

If you have a large playbook it may become useful to be able to run a specific part of the configuration without running
the whole playbook.

Both plays and tasks support a “tags:” attribute for this reason. You can ONLY filter tasks based on tags from the
command line with --tags or --skip-tags. Adding “tags:” in any part of a play (including roles) adds those
tags to the contained tasks.

Example:

tasks:

- yum: name={{ item }} state=installed
with_items:

- httpd
- memcached

tags:
- packages

- template: src=templates/src.j2 dest=/etc/foo.conf
tags:

- configuration

If you wanted to just run the “configuration” and “packages” part of a very long playbook, you could do this:

ansible-playbook example.yml --tags "configuration,packages"

On the other hand, if you want to run a playbook without certain tasks, you could do this:

ansible-playbook example.yml --skip-tags "notification"

Tag Reuse

You can apply the same tag name to more than one task, in the same file or included files. This will run all tasks with
that tag.

Example:

file: roles/common/tasks/main.yml

- name: be sure ntp is installed
yum: name=ntp state=installed
tags: ntp

- name: be sure ntp is configured
template: src=ntp.conf.j2 dest=/etc/ntp.conf

186 Chapter 1. About Ansible

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

notify:
- restart ntpd

tags: ntp

- name: be sure ntpd is running and enabled
service: name=ntpd state=started enabled=yes
tags: ntp

Tag Inheritance

You can apply tags to more than tasks, but they ONLY affect the tasks themselves. Applying tags anywhere else is just
a convenience so you don’t have to write it on every task:

- hosts: all
tags:
- bar

tasks:
...

- hosts: all
tags: ['foo']
tasks:
...

You may also apply tags to roles:

roles:
- { role: webserver, port: 5000, tags: ['web', 'foo'] }

And include statements:

- include: foo.yml
tags: [web,foo]

All of these apply the specified tags to EACH task inside the play, included file, or role, so that these tasks can be
selectively run when the playbook is invoked with the corresponding tags.

Special Tags

There is a special always tag that will always run a task, unless specifically skipped (--skip-tags always)

Example:

tasks:

- debug: msg="Always runs"
tags:

- always

- debug: msg="runs when you use tag1"
tags:

- tag1

There are another 3 special keywords for tags, tagged, untagged and all, which run only tagged, only untagged
and all tasks respectively.

1.4. Playbooks: Special Topics 187

Ansible 2.2 Documentation, 2.4

By default ansible runs as if --tags all had been specified.

:

Playbooks An introduction to playbooks

Playbook Roles and Include Statements Playbook organization by roles

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Vault

Topics

• Vault

– What Can Be Encrypted With Vault

– Creating Encrypted Files

– Editing Encrypted Files

– Rekeying Encrypted Files

– Encrypting Unencrypted Files

– Decrypting Encrypted Files

– Viewing Encrypted Files

– Running a Playbook With Vault

– Single Encrypted Variable

– Speeding Up Vault Operations

New in Ansible 1.5, “Vault” is a feature of ansible that allows keeping sensitive data such as passwords or keys in
encrypted files, rather than as plaintext in your playbooks or roles. These vault files can then be distributed or placed
in source control.

To enable this feature, a command line tool, ansible-vault is used to edit files, and a command line flag –ask-vault-pass
or –vault-password-file is used. Alternately, you may specify the location of a password file or command Ansible to
always prompt for the password in your ansible.cfg file. These options require no command line flag usage.

For best practices advice, refer to Variables and Vaults.

What Can Be Encrypted With Vault

The vault feature can encrypt any structured data file used by Ansible. This can include “group_vars/” or “host_vars/”
inventory variables, variables loaded by “include_vars” or “vars_files”, or variable files passed on the ansible-playbook
command line with “-e @file.yml” or “-e @file.json”. Role variables and defaults are also included!

Ansible tasks, handlers, and so on are also data so these can be encrypted with vault as well. To hide the names of
variables that you’re using, you can encrypt the task files in their entirety. However, that might be a little too much and
could annoy your coworkers :)

188 Chapter 1. About Ansible

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

The vault feature can also encrypt arbitrary files, even binary files. If a vault-encrypted file is given as the src argument
to the copy module, the file will be placed at the destination on the target host decrypted (assuming a valid vault
password is supplied when running the play).

As of version 2.3, Ansible also supports encrypting single values inside a YAML file, using the !vault tag to let YAML
and Ansible know it uses special processing. This feature is covered in more details below.

Creating Encrypted Files

To create a new encrypted data file, run the following command:

ansible-vault create foo.yml

First you will be prompted for a password. The password used with vault currently must be the same for all files you
wish to use together at the same time.

After providing a password, the tool will launch whatever editor you have defined with $EDITOR, and defaults to vi
(before 2.1 the default was vim). Once you are done with the editor session, the file will be saved as encrypted data.

The default cipher is AES (which is shared-secret based).

Editing Encrypted Files

To edit an encrypted file in place, use the ansible-vault edit command. This command will decrypt the file to a
temporary file and allow you to edit the file, saving it back when done and removing the temporary file:

ansible-vault edit foo.yml

Rekeying Encrypted Files

Should you wish to change your password on a vault-encrypted file or files, you can do so with the rekey command:

ansible-vault rekey foo.yml bar.yml baz.yml

This command can rekey multiple data files at once and will ask for the original password and also the new password.

Encrypting Unencrypted Files

If you have existing files that you wish to encrypt, use the ansible-vault encrypt command. This command can operate
on multiple files at once:

ansible-vault encrypt foo.yml bar.yml baz.yml

Decrypting Encrypted Files

If you have existing files that you no longer want to keep encrypted, you can permanently decrypt them by running the
ansible-vault decrypt command. This command will save them unencrypted to the disk, so be sure you do not want
ansible-vault edit instead:

ansible-vault decrypt foo.yml bar.yml baz.yml

1.4. Playbooks: Special Topics 189

Ansible 2.2 Documentation, 2.4

Viewing Encrypted Files

Available since Ansible 1.8

If you want to view the contents of an encrypted file without editing it, you can use the ansible-vault view command:

ansible-vault view foo.yml bar.yml baz.yml

Running a Playbook With Vault

To run a playbook that contains vault-encrypted data files, you must pass one of two flags. To specify the vault-
password interactively:

ansible-playbook site.yml --ask-vault-pass

This prompt will then be used to decrypt (in memory only) any vault encrypted files that are accessed. Currently this
requires that all files be encrypted with the same password.

Alternatively, passwords can be specified with a file or a script, the script version will require Ansible 1.7 or later.
When using this flag, ensure permissions on the file are such that no one else can access your key and do not add your
key to source control:

ansible-playbook site.yml --vault-password-file ~/.vault_pass.txt

ansible-playbook site.yml --vault-password-file ~/.vault_pass.py

The password should be a string stored as a single line in the file.

: You can also set ANSIBLE_VAULT_PASSWORD_FILE environment variable, e.g.
ANSIBLE_VAULT_PASSWORD_FILE=~/.vault_pass.txt and Ansible will automatically search for
the password in that file.

If you are using a script instead of a flat file, ensure that it is marked as executable, and that the password is printed to
standard output. If your script needs to prompt for data, prompts can be sent to standard error.

This is something you may wish to do if using Ansible from a continuous integration system like Jenkins.

(The –vault-password-file option can also be used with the Ansible-Pull command if you wish, though this would
require distributing the keys to your nodes, so understand the implications – vault is more intended for push mode).

Single Encrypted Variable

As of version 2.3, Ansible can now use a vaulted variable that lives in an otherwise ‘clear text’ YAML file:

notsecret: myvalue
mysecret: !vault |

$ANSIBLE_VAULT;1.1;AES256

→˓66386439653236336462626566653063336164663966303231363934653561363964363833313662

→˓6431626536303530376336343832656537303632313433360a626438346336353331386135323734

→˓62656361653630373231613662633962316233633936396165386439616533353965373339616234

→˓3430613539666330390a313736323265656432366236633330313963326365653937323833366536

190 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

34623731376664623134383463316265643436343438623266623965636363326136
other_plain_text: othervalue

This vaulted variable be decrypted with the supplied vault secret and used as a normal variable. The
ansible-vault command line supports stdin and stdout for encrypting data on the fly, which can be used from
your favorite editor to create these vaulted variables; you just have to be sure to add the !vault tag so both Ansible
and YAML are aware of the need to decrypt. The | is also required, as vault encryption results in a multi-line string.

Speeding Up Vault Operations

By default, Ansible uses PyCrypto to encrypt and decrypt vault files. If you have many encrypted files, decrypting
them at startup may cause a perceptible delay. To speed this up, install the cryptography package:

pip install cryptography

Start and Step

This shows a few alternative ways to run playbooks. These modes are very useful for testing new plays or debugging.

Start-at-task

If you want to start executing your playbook at a particular task, you can do so with the --start-at-task option:

ansible-playbook playbook.yml --start-at-task="install packages"

The above will start executing your playbook at a task named “install packages”.

Step

Playbooks can also be executed interactively with --step:

ansible-playbook playbook.yml --step

This will cause ansible to stop on each task, and ask if it should execute that task. Say you had a task called “configure
ssh”, the playbook run will stop and ask:

Perform task: configure ssh (y/n/c):

Answering “y” will execute the task, answering “n” will skip the task, and answering “c” will continue executing all
the remaining tasks without asking.

About Modules

Introduction

Modules (also referred to as “task plugins” or “library plugins”) are the ones that do the actual work in ansible, they
are what gets executed in each playbook task. But you can also run a single one using the ‘ansible’ command.

Let’s review how we execute three different modules from the command line:

1.5. About Modules 191

Ansible 2.2 Documentation, 2.4

ansible webservers -m service -a "name=httpd state=started"
ansible webservers -m ping
ansible webservers -m command -a "/sbin/reboot -t now"

Each module supports taking arguments. Nearly all modules take key=value arguments, space delimited. Some
modules take no arguments, and the command/shell modules simply take the string of the command you want to run.

From playbooks, Ansible modules are executed in a very similar way:

- name: reboot the servers
action: command /sbin/reboot -t now

Which can be abbreviated to:

- name: reboot the servers
command: /sbin/reboot -t now

Another way to pass arguments to a module is using yaml syntax also called ‘complex args’

- name: restart webserver
service:
name: httpd
state: restarted

All modules technically return JSON format data, though if you are using the command line or playbooks, you don’t
really need to know much about that. If you’re writing your own module, you care, and this means you do not have to
write modules in any particular language – you get to choose.

Modules should be idempotent, and should avoid making any changes if they detect that the current state matches the
desired final state. When using Ansible playbooks, these modules can trigger ‘change events’ in the form of notifying
‘handlers’ to run additional tasks.

Documentation for each module can be accessed from the command line with the ansible-doc tool:

ansible-doc yum

A list of all installed modules is also available:

ansible-doc -l

:

Introduction To Ad-Hoc Commands Examples of using modules in /usr/bin/ansible

Playbooks Examples of using modules with /usr/bin/ansible-playbook

Developing Modules How to write your own modules

Python API Examples of using modules with the Python API

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Return Values

192 Chapter 1. About Ansible

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Topics

• Return Values

– Common

* backup_file

* changed

* failed

* invocation

* msg

* rc

* results

* skipped

* stderr

* stderr_lines

* stdout

* stdout_lines

– Internal use

* ansible_facts

* exception

* warnings

* deprecations

Ansible modules normally return a data structure that can be registered into a variable, or seen directly when output by
the ansible program. Each module can optionally document its own unique return values (visible through ansible-doc
and https://docs.ansible.com).

This document covers return values common to all modules.

: Some of these keys might be set by Ansible itself once it processes the module’s return information.

Common

backup_file

For those modules that implement backup=no|yes when manipulating files, a path to the backup file created.

changed

A boolean indicating if the task had to make changes.

1.5. About Modules 193

https://docs.ansible.com

Ansible 2.2 Documentation, 2.4

failed

A boolean that indicates if the task was failed or not.

invocation

Information on how the module was invoked.

msg

A string with a generic message relayed to the user.

rc

Some modules execute command line utilities or are geared for executing commands directly (raw, shell, command,
etc), this field contains ‘return code’ of these utilities.

results

If this key exists, it indicates that a loop was present for the task and that it contains a list of the normal module ‘result’
per item.

skipped

A boolean that indicates if the task was skipped or not

stderr

Some modules execute command line utilities or are geared for executing commands directly (raw, shell, command,
etc), this field contains the error output of these utilities.

stderr_lines

When c(stderr) is returned we also always provide this field which is a list of strings, one item per line from the
original.

stdout

Some modules execute command line utilities or are geared for executing commands directly (raw, shell, command,
etc). This field contains the normal output of these utilities.

stdout_lines

When c(stdout) is returned, Ansible always provides a list of strings, each containing one item per line from the
original output.

194 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Internal use

These keys can be added by modules but will be removed from registered variables; they are ‘consumed’ by Ansible
itself.

ansible_facts

This key should contain a dictionary which will be appended to the facts assigned to the host. These will be directly
accessible and don’t require using a registered variable.

exception

This key can contain traceback information caused by an exception in a module. It will only be displayed on high
verbosity (-vvv).

warnings

This key contains a list of strings that will be presented to the user.

deprecations

This key contains a list of dictionaries that will be presented to the user. Keys of the dictionaries are msg and version,
values are string, value for the version key can be an empty string.

:

About Modules Learn about available modules

GitHub Core modules directory Browse source of core modules

Github Extras modules directory Browse source of extras modules.

Mailing List Development mailing list

irc.freenode.net #ansible IRC chat channel

Module Support

Ansible has many modules, but not all of them are maintained by the core project commiters. Each module should
have associated metadata that indicates which of the following categories they fall into. This should be visible in each
module’s documentation.

Documentation updates for each module can also be edited directly in the module and by submitting a pull request to
the module source code; just look for the “DOCUMENTATION” block in the source tree.

If you believe you have found a bug in a module and are already running the latest stable or development version of
Ansible, first look in the issue tracker at github.com/ansible/ansible to see if a bug has already been filed. If not, we
would be grateful if you would file one.

Should you have a question rather than a bug report, inquiries are welcome on the ansible-project google group or on
Ansible’s “#ansible” channel, located on irc.freenode.net.

1.5. About Modules 195

https://github.com/ansible/ansible-modules-core/tree/devel
https://github.com/ansible/ansible-modules-extras/tree/devel
http://groups.google.com/group/ansible-devel
http://irc.freenode.net
https://github.com/ansible/ansible/issues
https://groups.google.com/forum/#!forum/ansible-project

Ansible 2.2 Documentation, 2.4

For development-oriented topics, use the ansible-devel google group or Ansible’s #ansible and
#ansible-devel channels, located on irc.freenode.net. You should also read Community Information &
Contributing, Testing Ansible and Developing Modules.

The modules are hosted on GitHub in a subdirectory of the ansible repo.

Core

These are modules that the core ansible team maintains and will always ship with ansible itself. They will also receive
slightly higher priority for all requests. Non-core modules are still fully usable.

Curated

Some examples of Curated modules are submitted by other companies or maintained by the community. Maintainers
of these types of modules must watch for any issues reported or pull requests raised against the module.

Core Committers will review all modules becoming Curated. Core Committers will review proposed changes to
existing Curated modules once the community maintainers of the module have approved the changes. Core committers
will also ensure that any issues that arise due to Ansible engine changes will be remediated. Also, it is strongly
recommended (but not presently required) for these types of modules to have unit tests.

These modules are currently shipped with Ansible, but might be shipped separately in the future.

Community

These modules are not supported by Core Committers or by companies/partners associated to the module. They are
maintained by the community.

They are still fully usable, but the response rate to issues is purely up to the community. Best effort support will be
provided but is not covered under any support contracts.

These modules are currently shipped with Ansible, but will most likely be shipped separately in the future.

:

Introduction To Ad-Hoc Commands Examples of using modules in /usr/bin/ansible

Playbooks Examples of using modules with /usr/bin/ansible-playbook

Developing Modules How to write your own modules

Python API Examples of using modules with the Python API

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Ansible ships with a number of modules (called the ‘module library’) that can be executed directly on remote hosts or
through Playbooks.

Users can also write their own modules. These modules can control system resources, like services, packages, or files
(anything really), or handle executing system commands.

:

Introduction To Ad-Hoc Commands Examples of using modules in /usr/bin/ansible

Playbooks Examples of using modules with /usr/bin/ansible-playbook

Developing Modules How to write your own modules

196 Chapter 1. About Ansible

https://groups.google.com/forum/#!forum/ansible-devel
https://github.com/ansible/ansible/tree/devel/lib/ansible/modules
http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Python API Examples of using modules with the Python API

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

Detailed Guides

This section is new and evolving. The idea here is to explore particular use cases in greater depth and provide a more
“top down” explanation of some basic features.

Amazon Web Services Guide

Introduction

Ansible contains a number of modules for controlling Amazon Web Services (AWS). The purpose of this section is to
explain how to put Ansible modules together (and use inventory scripts) to use Ansible in AWS context.

Requirements for the AWS modules are minimal.

All of the modules require and are tested against recent versions of boto. You’ll need this Python module installed on
your control machine. Boto can be installed from your OS distribution or python’s “pip install boto”.

Whereas classically ansible will execute tasks in its host loop against multiple remote machines, most cloud-control
steps occur on your local machine with reference to the regions to control.

In your playbook steps we’ll typically be using the following pattern for provisioning steps:

- hosts: localhost
connection: local
gather_facts: False
tasks:
- ...

Authentication

Authentication with the AWS-related modules is handled by either specifying your access and secret key as ENV
variables or module arguments.

For environment variables:

export AWS_ACCESS_KEY_ID='AK123'
export AWS_SECRET_ACCESS_KEY='abc123'

For storing these in a vars_file, ideally encrypted with ansible-vault:

ec2_access_key: "--REMOVED--"
ec2_secret_key: "--REMOVED--"

Note that if you store your credentials in vars_file, you need to refer to them in each AWS-module. For example:

1.6. Detailed Guides 197

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

- ec2
aws_access_key: "{{ec2_access_key}}"
aws_secret_key: "{{ec2_secret_key}}"
image: "..."

Provisioning

The ec2 module provisions and de-provisions instances within EC2.

An example of making sure there are only 5 instances tagged ‘Demo’ in EC2 follows.

In the example below, the “exact_count” of instances is set to 5. This means if there are 0 instances already existing,
then 5 new instances would be created. If there were 2 instances, only 3 would be created, and if there were 8 instances,
3 instances would be terminated.

What is being counted is specified by the “count_tag” parameter. The parameter “instance_tags” is used to apply tags
to the newly created instance.:

demo_setup.yml

- hosts: localhost
connection: local
gather_facts: False

tasks:

- name: Provision a set of instances
ec2:

key_name: my_key
group: test
instance_type: t2.micro
image: "{{ ami_id }}"
wait: true
exact_count: 5
count_tag:

Name: Demo
instance_tags:

Name: Demo
register: ec2

The data about what instances are created is being saved by the “register” keyword in the variable named “ec2”.

From this, we’ll use the add_host module to dynamically create a host group consisting of these new instances. This
facilitates performing configuration actions on the hosts immediately in a subsequent task.:

demo_setup.yml

- hosts: localhost
connection: local
gather_facts: False

tasks:

- name: Provision a set of instances
ec2:

key_name: my_key
group: test

198 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

instance_type: t2.micro
image: "{{ ami_id }}"
wait: true
exact_count: 5
count_tag:

Name: Demo
instance_tags:

Name: Demo
register: ec2

- name: Add all instance public IPs to host group
add_host: hostname={{ item.public_ip }} groups=ec2hosts
with_items: "{{ ec2.instances }}"

With the host group now created, a second play at the bottom of the the same provisioning playbook file might now
have some configuration steps:

demo_setup.yml

- name: Provision a set of instances
hosts: localhost
... AS ABOVE ...

- hosts: ec2hosts
name: configuration play
user: ec2-user
gather_facts: true

tasks:

- name: Check NTP service
service: name=ntpd state=started

Host Inventory

Once your nodes are spun up, you’ll probably want to talk to them again. With a cloud setup, it’s best to not maintain
a static list of cloud hostnames in text files. Rather, the best way to handle this is to use the ec2 dynamic inventory
script. See Dynamic Inventory.

This will also dynamically select nodes that were even created outside of Ansible, and allow Ansible to manage them.

See Dynamic Inventory for how to use this, then flip back over to this chapter.

Tags And Groups And Variables

When using the ec2 inventory script, hosts automatically appear in groups based on how they are tagged in EC2.

For instance, if a host is given the “class” tag with the value of “webserver”, it will be automatically discoverable via
a dynamic group like so:

- hosts: tag_class_webserver
tasks:
- ping

Using this philosophy can be a great way to keep systems separated by the function they perform.

1.6. Detailed Guides 199

Ansible 2.2 Documentation, 2.4

In this example, if we wanted to define variables that are automatically applied to each machine tagged with the ‘class’
of ‘webserver’, ‘group_vars’ in ansible can be used. See Splitting Out Host and Group Specific Data.

Similar groups are available for regions and other classifications, and can be similarly assigned variables using the
same mechanism.

Autoscaling with Ansible Pull

Amazon Autoscaling features automatically increase or decrease capacity based on load. There are also Ansible
modules shown in the cloud documentation that can configure autoscaling policy.

When nodes come online, it may not be sufficient to wait for the next cycle of an ansible command to come along and
configure that node.

To do this, pre-bake machine images which contain the necessary ansible-pull invocation. Ansible-pull is a command
line tool that fetches a playbook from a git server and runs it locally.

One of the challenges of this approach is that there needs to be a centralized way to store data about the results of pull
commands in an autoscaling context. For this reason, the autoscaling solution provided below in the next section can
be a better approach.

Read Ansible-Pull for more information on pull-mode playbooks.

Autoscaling with Ansible Tower

Ansible Tower also contains a very nice feature for auto-scaling use cases. In this mode, a simple curl script can call a
defined URL and the server will “dial out” to the requester and configure an instance that is spinning up. This can be
a great way to reconfigure ephemeral nodes. See the Tower install and product documentation for more details.

A benefit of using the callback in Tower over pull mode is that job results are still centrally recorded and less informa-
tion has to be shared with remote hosts.

Ansible With (And Versus) CloudFormation

CloudFormation is a Amazon technology for defining a cloud stack as a JSON document.

Ansible modules provide an easier to use interface than CloudFormation in many examples, without defining a com-
plex JSON document. This is recommended for most users.

However, for users that have decided to use CloudFormation, there is an Ansible module that can be used to apply a
CloudFormation template to Amazon.

When using Ansible with CloudFormation, typically Ansible will be used with a tool like Packer to build images, and
CloudFormation will launch those images, or ansible will be invoked through user data once the image comes online,
or a combination of the two.

Please see the examples in the Ansible CloudFormation module for more details.

AWS Image Building With Ansible

Many users may want to have images boot to a more complete configuration rather than configuring them entirely
after instantiation. To do this, one of many programs can be used with Ansible playbooks to define and upload a base
image, which will then get its own AMI ID for usage with the ec2 module or other Ansible AWS modules such as
ec2_asg or the cloudformation module. Possible tools include Packer, aminator, and Ansible’s ec2_ami module.

Generally speaking, we find most users using Packer.

200 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

See the Packer documentation of the Ansible local Packer provisioner and Ansible remote Packer provisioner.

If you do not want to adopt Packer at this time, configuring a base-image with Ansible after provisioning (as shown
above) is acceptable.

Next Steps: Explore Modules

Ansible ships with lots of modules for configuring a wide array of EC2 services. Browse the “Cloud” category of the
module documentation for a full list with examples.

:

About Modules All the documentation for Ansible modules

Playbooks An introduction to playbooks

Delegation, Rolling Updates, and Local Actions Delegation, useful for working with loud balancers, clouds, and lo-
cally executed steps.

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Getting Started with Azure

Ansible includes a suite of modules for interacting with Azure Resource Manager, giving you the tools to easily create
and orchestrate infrastructure on the Microsoft Azure Cloud.

Requirements

Using the Azure Resource Manager modules requires having Azure Python SDK installed on the host running Ansible.
You will need to have == v2.0.0RC5 installed. The simplest way to install the SDK is via pip:

$ pip install "azure==2.0.0rc5"

Authenticating with Azure

Using the Azure Resource Manager modules requires authenticating with the Azure API. You can choose from two
authentication strategies:

• Active Directory Username/Password

• Service Principal Credentials

Follow the directions for the strategy you wish to use, then proceed to Providing Credentials to Azure Modules for
instructions on how to actually use the modules and authenticate with the Azure API.

Using Service Principal

There is now a detailed official tutorial describing how to create a service principal.

After stepping through the tutorial you will have:

• Your Client ID, which is found in the “client id” box in the “Configure” page of your application in the Azure
portal

1.6. Detailed Guides 201

https://www.packer.io/docs/provisioners/ansible-local.html
https://www.packer.io/docs/provisioners/ansible.html
http://groups.google.com/group/ansible-devel
http://irc.freenode.net
https://github.com/Azure/azure-sdk-for-python
https://azure.microsoft.com/en-us/documentation/articles/resource-group-create-service-principal-portal/

Ansible 2.2 Documentation, 2.4

• Your Secret key, generated when you created the application. You cannot show the key after creation. If you
lost the key, you must create a new one in the “Configure” page of your application.

• And finally, a tenant ID. It’s a UUID (e.g. ABCDEFGH-1234-ABCD-1234-ABCDEFGHIJKL) pointing to the
AD containing your application. You will find it in the URL from within the Azure portal, or in the “view
endpoints” of any given URL.

Using Active Directory Username/Password

To create an Active Directory username/password:

• Connect to the Azure Classic Portal with your admin account

• Create a user in your default AAD. You must NOT activate Multi-Factor Authentication

• Go to Settings - Administrators

• Click on Add and enter the email of the new user.

• Check the checkbox of the subscription you want to test with this user.

• Login to Azure Portal with this new user to change the temporary password to a new one. You will not be able
to use the temporary password for OAuth login.

Providing Credentials to Azure Modules

The modules offer several ways to provide your credentials. For a CI/CD tool such as Ansible Tower or Jenkins, you
will most likely want to use environment variables. For local development you may wish to store your credentials in
a file within your home directory. And of course, you can always pass credentials as parameters to a task within a
playbook. The order of precedence is parameters, then environment variables, and finally a file found in your home
directory.

Using Environment Variables

To pass service principal credentials via the environment, define the following variables:

• AZURE_CLIENT_ID

• AZURE_SECRET

• AZURE_SUBSCRIPTION_ID

• AZURE_TENANT

To pass Active Directory username/password via the environment, define the following variables:

• AZURE_AD_USER

• AZURE_PASSWORD

• AZURE_SUBSCRIPTION_ID

Storing in a File

When working in a development environment, it may be desirable to store credentials in a file. The modules will look
for credentials in $HOME/.azure/credentials. This file is an ini style file. It will look as follows:

202 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

[default]
subscription_id=xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
client_id=xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
secret=xxxxxxxxxxxxxxxxx
tenant=xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

It is possible to store multiple sets of credentials within the credentials file by creating multiple sections. Each section
is considered a profile. The modules look for the [default] profile automatically. Define AZURE_PROFILE in the
environment or pass a profile parameter to specify a specific profile.

Passing as Parameters

If you wish to pass credentials as parameters to a task, use the following parameters for service principal:

• client_id

• secret

• subscription_id

• tenant

Or, pass the following parameters for Active Directory username/password:

• ad_user

• password

• subscription_id

Creating Virtual Machines

There are two ways to create a virtual machine, both involving the azure_rm_virtualmachine module. We can either
create a storage account, network interface, security group and public IP address and pass the names of these objects
to the module as parameters, or we can let the module do the work for us and accept the defaults it chooses.

Creating Individual Components

An Azure module is available to help you create a storage account, virtual network, subnet, network interface,
security group and public IP. Here is a full example of creating each of these and passing the names to the
azure_rm_virtualmachine module at the end:

- name: Create storage account
azure_rm_storageaccount:
resource_group: Testing
name: testaccount001
account_type: Standard_LRS

- name: Create virtual network
azure_rm_virtualnetwork:
resource_group: Testing
name: testvn001
address_prefixes: "10.10.0.0/16"

- name: Add subnet
azure_rm_subnet:

1.6. Detailed Guides 203

Ansible 2.2 Documentation, 2.4

resource_group: Testing
name: subnet001
address_prefix: "10.10.0.0/24"
virtual_network: testvn001

- name: Create public ip
azure_rm_publicipaddress:
resource_group: Testing
allocation_method: Static
name: publicip001

- name: Create security group that allows SSH
azure_rm_securitygroup:
resource_group: Testing
name: secgroup001
rules:

- name: SSH
protocol: Tcp
destination_port_range: 22
access: Allow
priority: 101
direction: Inbound

- name: Create NIC
azure_rm_networkinterface:
resource_group: Testing
name: testnic001
virtual_network: testvn001
subnet: subnet001
public_ip_name: publicip001
security_group: secgroup001

- name: Create virtual machine
azure_rm_virtualmachine:
resource_group: Testing
name: testvm001
vm_size: Standard_D1
storage_account: testaccount001
storage_container: testvm001
storage_blob: testvm001.vhd
admin_username: admin
admin_password: Password!
network_interfaces: testnic001
image:

offer: CentOS
publisher: OpenLogic
sku: '7.1'
version: latest

Each of the Azure modules offers a variety of parameter options. Not all options are demonstrated in the above
example. See each individual module for further details and examples.

Creating a Virtual Machine with Default Options

If you simply want to create a virtual machine without specifying all the details, you can do that as well. The only
caveat is that you will need a virtual network with one subnet already in your resource group. Assuming you have a

204 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

virtual network already with an existing subnet, you can run the following to create a VM:

azure_rm_virtualmachine:
resource_group: Testing
name: testvm10
vm_size: Standard_D1
admin_username: chouseknecht
ssh_password: false
ssh_public_keys: "{{ ssh_keys }}"
image:
offer: CentOS
publisher: OpenLogic
sku: '7.1'
version: latest

Dynamic Inventory Script

If you are not familiar with Ansible’s dynamic inventory scripts, check out Intro to Dynamic Inventory.

The Azure Resource Manager inventory script is called azure_rm.py. It authenticates with the Azure API exactly the
same as the Azure modules, which means you will either define the same environment variables described above in
Using Environment Variables, create a $HOME/.azure/credentials file (also described above in Storing in a File), or
pass command line parameters. To see available command line options execute the following:

$./ansible/contrib/inventory/azure_rm.py --help

As with all dynamic inventory scripts, the script can be executed directly, passed as a parameter to the ansible com-
mand, or passed directly to ansible-playbook using the -i option. No matter how it is executed the script produces
JSON representing all of the hosts found in your Azure subscription. You can narrow this down to just hosts found in
a specific set of Azure resource groups, or even down to a specific host.

For a given host, the inventory script provides the following host variables:

{
"ansible_host": "XXX.XXX.XXX.XXX",
"computer_name": "computer_name2",
"fqdn": null,
"id": "/subscriptions/subscription-id/resourceGroups/galaxy-production/providers/

→˓Microsoft.Compute/virtualMachines/object-name",
"image": {
"offer": "CentOS",
"publisher": "OpenLogic",
"sku": "7.1",
"version": "latest"

},
"location": "westus",
"mac_address": "00-00-5E-00-53-FE",
"name": "object-name",
"network_interface": "interface-name",
"network_interface_id": "/subscriptions/subscription-id/resourceGroups/galaxy-

→˓production/providers/Microsoft.Network/networkInterfaces/object-name1",
"network_security_group": null,
"network_security_group_id": null,
"os_disk": {
"name": "object-name",
"operating_system_type": "Linux"

},

1.6. Detailed Guides 205

http://docs.ansible.com/ansible/intro_dynamic_inventory.html

Ansible 2.2 Documentation, 2.4

"plan": null,
"powerstate": "running",
"private_ip": "172.26.3.6",
"private_ip_alloc_method": "Static",
"provisioning_state": "Succeeded",
"public_ip": "XXX.XXX.XXX.XXX",
"public_ip_alloc_method": "Static",
"public_ip_id": "/subscriptions/subscription-id/resourceGroups/galaxy-production/

→˓providers/Microsoft.Network/publicIPAddresses/object-name",
"public_ip_name": "object-name",
"resource_group": "galaxy-production",
"security_group": "object-name",
"security_group_id": "/subscriptions/subscription-id/resourceGroups/galaxy-

→˓production/providers/Microsoft.Network/networkSecurityGroups/object-name",
"tags": {
"db": "mysql"

},
"type": "Microsoft.Compute/virtualMachines",
"virtual_machine_size": "Standard_DS4"

}

Host Groups

By default hosts are grouped by:

• azure (all hosts)

• location name

• resource group name

• security group name

• tag key

• tag key_value

You can control host groupings and host selection by either defining environment variables or creating an azure_rm.ini
file in your current working directory.

NOTE: An .ini file will take precedence over environment variables.

NOTE: The name of the .ini file is the basename of the inventory script (i.e. ‘azure_rm’) with a ‘.ini’ extension. This
allows you to copy, rename and customize the inventory script and have matching .ini files all in the same directory.

Control grouping using the following variables defined in the environment:

• AZURE_GROUP_BY_RESOURCE_GROUP=yes

• AZURE_GROUP_BY_LOCATION=yes

• AZURE_GROUP_BY_SECURITY_GROUP=yes

• AZURE_GROUP_BY_TAG=yes

Select hosts within specific resource groups by assigning a comma separated list to:

• AZURE_RESOURCE_GROUPS=resource_group_a,resource_group_b

Select hosts for specific tag key by assigning a comma separated list of tag keys to:

• AZURE_TAGS=key1,key2,key3

206 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Select hosts for specific locations by assigning a comma separated list of locations to:

• AZURE_LOCATIONS=eastus,eastus2,westus

Or, select hosts for specific tag key:value pairs by assigning a comma separated list key:value pairs to:

• AZURE_TAGS=key1:value1,key2:value2

If you don’t need the powerstate, you can improve performance by turning off powerstate fetching:

• AZURE_INCLUDE_POWERSTATE=no

A sample azure_rm.ini file is included along with the inventory script in contrib/inventory. An .ini file will contain the
following:

[azure]
Control which resource groups are included. By default all resources groups are
→˓included.
Set resource_groups to a comma separated list of resource groups names.
#resource_groups=

Control which tags are included. Set tags to a comma separated list of keys or
→˓key:value pairs
#tags=

Control which locations are included. Set locations to a comma separated list of
→˓locations.
#locations=

Include powerstate. If you don't need powerstate information, turning it off
→˓improves runtime performance.
Valid values: yes, no, true, false, True, False, 0, 1.
include_powerstate=yes

Control grouping with the following boolean flags. Valid values: yes, no, true,
→˓false, True, False, 0, 1.
group_by_resource_group=yes
group_by_location=yes
group_by_security_group=yes
group_by_tag=yes

Examples

Here are some examples using the inventory script:

Execute /bin/uname on all instances in the Testing resource group
$ ansible -i azure_rm.py Testing -m shell -a "/bin/uname -a"

Use the inventory script to print instance specific information
$./ansible/contrib/inventory/azure_rm.py --host my_instance_host_name --resource-
→˓groups=Testing --pretty

Use the inventory script with ansible-playbook
$ ansible-playbook -i ./ansible/contrib/inventory/azure_rm.py test_playbook.yml

Here is a simple playbook to exercise the Azure inventory script:

- name: Test the inventory script
hosts: azure

1.6. Detailed Guides 207

Ansible 2.2 Documentation, 2.4

connection: local
gather_facts: no
tasks:
- debug: msg="{{ inventory_hostname }} has powerstate {{ powerstate }}"

You can execute the playbook with something like:

$ ansible-playbook -i ./ansible/contrib/inventory/azure_rm.py test_azure_inventory.yml

Rackspace Cloud Guide

Introduction

: This section of the documentation is under construction. We are in the process of adding more examples about the
Rackspace modules and how they work together. Once complete, there will also be examples for Rackspace Cloud in
ansible-examples.

Ansible contains a number of core modules for interacting with Rackspace Cloud.

The purpose of this section is to explain how to put Ansible modules together (and use inventory scripts) to use Ansible
in a Rackspace Cloud context.

Prerequisites for using the rax modules are minimal. In addition to ansible itself, all of the modules require and are
tested against pyrax 1.5 or higher. You’ll need this Python module installed on the execution host.

pyrax is not currently available in many operating system package repositories, so you will likely need to install it via
pip:

$ pip install pyrax

The following steps will often execute from the control machine against the Rackspace Cloud API, so it makes sense
to add localhost to the inventory file. (Ansible may not require this manual step in the future):

[localhost]
localhost ansible_connection=local

In playbook steps, we’ll typically be using the following pattern:

- hosts: localhost
connection: local
gather_facts: False
tasks:

Credentials File

The rax.py inventory script and all rax modules support a standard pyrax credentials file that looks like:

[rackspace_cloud]
username = myraxusername
api_key = d41d8cd98f00b204e9800998ecf8427e

Setting the environment parameter RAX_CREDS_FILE to the path of this file will help Ansible find how to load this
information.

208 Chapter 1. About Ansible

https://github.com/ansible/ansible-examples/

Ansible 2.2 Documentation, 2.4

More information about this credentials file can be found at https://github.com/rackspace/pyrax/blob/master/docs/
getting_started.md#authenticating

Running from a Python Virtual Environment (Optional)

Most users will not be using virtualenv, but some users, particularly Python developers sometimes like to.

There are special considerations when Ansible is installed to a Python virtualenv, rather than the default of installing
at a global scope. Ansible assumes, unless otherwise instructed, that the python binary will live at /usr/bin/python.
This is done via the interpreter line in modules, however when instructed by setting the inventory variable ‘ansi-
ble_python_interpreter’, Ansible will use this specified path instead to find Python. This can be a cause of confusion
as one may assume that modules running on ‘localhost’, or perhaps running via ‘local_action’, are using the virtualenv
Python interpreter. By setting this line in the inventory, the modules will execute in the virtualenv interpreter and
have available the virtualenv packages, specifically pyrax. If using virtualenv, you may wish to modify your localhost
inventory definition to find this location as follows:

[localhost]
localhost ansible_connection=local ansible_python_interpreter=/path/to/ansible_venv/
→˓bin/python

: pyrax may be installed in the global Python package scope or in a virtual environment. There are no special
considerations to keep in mind when installing pyrax.

Provisioning

Now for the fun parts.

The ‘rax’ module provides the ability to provision instances within Rackspace Cloud. Typically the provisioning task
will be performed from your Ansible control server (in our example, localhost) against the Rackspace cloud API. This
is done for several reasons:

• Avoiding installing the pyrax library on remote nodes

• No need to encrypt and distribute credentials to remote nodes

• Speed and simplicity

: Authentication with the Rackspace-related modules is handled by either specifying your username and API key as
environment variables or passing them as module arguments, or by specifying the location of a credentials file.

Here is a basic example of provisioning an instance in ad-hoc mode:

$ ansible localhost -m rax -a "name=awx flavor=4 image=ubuntu-1204-lts-precise-
→˓pangolin wait=yes" -c local

Here’s what it would look like in a playbook, assuming the parameters were defined in variables:

tasks:
- name: Provision a set of instances
local_action:

module: rax
name: "{{ rax_name }}"
flavor: "{{ rax_flavor }}"

1.6. Detailed Guides 209

https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating

Ansible 2.2 Documentation, 2.4

image: "{{ rax_image }}"
count: "{{ rax_count }}"
group: "{{ group }}"
wait: yes

register: rax

The rax module returns data about the nodes it creates, like IP addresses, hostnames, and login passwords. By reg-
istering the return value of the step, it is possible used this data to dynamically add the resulting hosts to inventory
(temporarily, in memory). This facilitates performing configuration actions on the hosts in a follow-on task. In the
following example, the servers that were successfully created using the above task are dynamically added to a group
called “raxhosts”, with each nodes hostname, IP address, and root password being added to the inventory.

: Ansible 2.0 has deprecated the “ssh” from ansible_ssh_user, ansible_ssh_host, and
ansible_ssh_port to become ansible_user, ansible_host, and ansible_port. If you are using
a version of Ansible prior to 2.0, you should continue using the older style variables (ansible_ssh_*). These
shorter variables are ignored, without warning, in older versions of Ansible.

- name: Add the instances we created (by public IP) to the group 'raxhosts'
local_action:

module: add_host
hostname: "{{ item.name }}"
ansible_host: "{{ item.rax_accessipv4 }}"
ansible_ssh_pass: "{{ item.rax_adminpass }}"
groups: raxhosts

with_items: "{{ rax.success }}"
when: rax.action == 'create'

With the host group now created, the next play in this playbook could now configure servers belonging to the raxhosts
group.

- name: Configuration play
hosts: raxhosts
user: root
roles:
- ntp
- webserver

The method above ties the configuration of a host with the provisioning step. This isn’t always what you want, and
leads us to the next section.

Host Inventory

Once your nodes are spun up, you’ll probably want to talk to them again. The best way to handle this is to use the “rax”
inventory plugin, which dynamically queries Rackspace Cloud and tells Ansible what nodes you have to manage. You
might want to use this even if you are spinning up cloud instances via other tools, including the Rackspace Cloud user
interface. The inventory plugin can be used to group resources by metadata, region, OS, etc. Utilizing metadata is
highly recommended in “rax” and can provide an easy way to sort between host groups and roles. If you don’t want
to use the rax.py dynamic inventory script, you could also still choose to manually manage your INI inventory file,
though this is less recommended.

In Ansible it is quite possible to use multiple dynamic inventory plugins along with INI file data. Just put them in a
common directory and be sure the scripts are chmod +x, and the INI-based ones are not.

210 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

rax.py

To use the rackspace dynamic inventory script, copy rax.py into your inventory directory and make it executable.
You can specify a credentials file for rax.py utilizing the RAX_CREDS_FILE environment variable.

: Dynamic inventory scripts (like rax.py) are saved in /usr/share/ansible/inventory if Ansible has
been installed globally. If installed to a virtualenv, the inventory scripts are installed to $VIRTUALENV/share/
inventory.

: Users of Ansible Tower will note that dynamic inventory is natively supported by Tower, and all you have to do is
associate a group with your Rackspace Cloud credentials, and it will easily synchronize without going through these
steps:

$ RAX_CREDS_FILE=~/.raxpub ansible all -i rax.py -m setup

rax.py also accepts a RAX_REGION environment variable, which can contain an individual region, or a comma
separated list of regions.

When using rax.py, you will not have a ‘localhost’ defined in the inventory.

As mentioned previously, you will often be running most of these modules outside of the host loop, and will need
‘localhost’ defined. The recommended way to do this, would be to create an inventory directory, and place both
the rax.py script and a file containing localhost in it.

Executing ansible or ansible-playbook and specifying the inventory directory instead of an individual
file, will cause ansible to evaluate each file in that directory for inventory.

Let’s test our inventory script to see if it can talk to Rackspace Cloud.

$ RAX_CREDS_FILE=~/.raxpub ansible all -i inventory/ -m setup

Assuming things are properly configured, the rax.py inventory script will output information similar to the following
information, which will be utilized for inventory and variables.

{
"ORD": [

"test"
],
"_meta": {

"hostvars": {
"test": {

"ansible_host": "198.51.100.1",
"rax_accessipv4": "198.51.100.1",
"rax_accessipv6": "2001:DB8::2342",
"rax_addresses": {

"private": [
{

"addr": "192.0.2.2",
"version": 4

}
],
"public": [

{
"addr": "198.51.100.1",
"version": 4

1.6. Detailed Guides 211

Ansible 2.2 Documentation, 2.4

},
{

"addr": "2001:DB8::2342",
"version": 6

}
]

},
"rax_config_drive": "",
"rax_created": "2013-11-14T20:48:22Z",
"rax_flavor": {

"id": "performance1-1",
"links": [

{
"href": "https://ord.servers.api.rackspacecloud.com/

→˓111111/flavors/performance1-1",
"rel": "bookmark"

}
]

},
"rax_hostid":

→˓"e7b6961a9bd943ee82b13816426f1563bfda6846aad84d52af45a4904660cde0",
"rax_human_id": "test",
"rax_id": "099a447b-a644-471f-87b9-a7f580eb0c2a",
"rax_image": {

"id": "b211c7bf-b5b4-4ede-a8de-a4368750c653",
"links": [

{
"href": "https://ord.servers.api.rackspacecloud.com/

→˓111111/images/b211c7bf-b5b4-4ede-a8de-a4368750c653",
"rel": "bookmark"

}
]

},
"rax_key_name": null,
"rax_links": [

{
"href": "https://ord.servers.api.rackspacecloud.com/v2/111111/

→˓servers/099a447b-a644-471f-87b9-a7f580eb0c2a",
"rel": "self"

},
{

"href": "https://ord.servers.api.rackspacecloud.com/111111/
→˓servers/099a447b-a644-471f-87b9-a7f580eb0c2a",

"rel": "bookmark"
}

],
"rax_metadata": {

"foo": "bar"
},
"rax_name": "test",
"rax_name_attr": "name",
"rax_networks": {

"private": [
"192.0.2.2"

],
"public": [

"198.51.100.1",
"2001:DB8::2342"

212 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

]
},
"rax_os-dcf_diskconfig": "AUTO",
"rax_os-ext-sts_power_state": 1,
"rax_os-ext-sts_task_state": null,
"rax_os-ext-sts_vm_state": "active",
"rax_progress": 100,
"rax_status": "ACTIVE",
"rax_tenant_id": "111111",
"rax_updated": "2013-11-14T20:49:27Z",
"rax_user_id": "22222"

}
}

}
}

Standard Inventory

When utilizing a standard ini formatted inventory file (as opposed to the inventory plugin), it may still be advantageous
to retrieve discoverable hostvar information from the Rackspace API.

This can be achieved with the rax_facts module and an inventory file similar to the following:

[test_servers]
hostname1 rax_region=ORD
hostname2 rax_region=ORD

- name: Gather info about servers
hosts: test_servers
gather_facts: False
tasks:
- name: Get facts about servers

local_action:
module: rax_facts
credentials: ~/.raxpub
name: "{{ inventory_hostname }}"
region: "{{ rax_region }}"

- name: Map some facts
set_fact:

ansible_host: "{{ rax_accessipv4 }}"

While you don’t need to know how it works, it may be interesting to know what kind of variables are returned.

The rax_facts module provides facts as followings, which match the rax.py inventory script:

{
"ansible_facts": {

"rax_accessipv4": "198.51.100.1",
"rax_accessipv6": "2001:DB8::2342",
"rax_addresses": {

"private": [
{

"addr": "192.0.2.2",
"version": 4

}
],

1.6. Detailed Guides 213

Ansible 2.2 Documentation, 2.4

"public": [
{

"addr": "198.51.100.1",
"version": 4

},
{

"addr": "2001:DB8::2342",
"version": 6

}
]

},
"rax_config_drive": "",
"rax_created": "2013-11-14T20:48:22Z",
"rax_flavor": {

"id": "performance1-1",
"links": [

{
"href": "https://ord.servers.api.rackspacecloud.com/111111/

→˓flavors/performance1-1",
"rel": "bookmark"

}
]

},
"rax_hostid":

→˓"e7b6961a9bd943ee82b13816426f1563bfda6846aad84d52af45a4904660cde0",
"rax_human_id": "test",
"rax_id": "099a447b-a644-471f-87b9-a7f580eb0c2a",
"rax_image": {

"id": "b211c7bf-b5b4-4ede-a8de-a4368750c653",
"links": [

{
"href": "https://ord.servers.api.rackspacecloud.com/111111/images/

→˓b211c7bf-b5b4-4ede-a8de-a4368750c653",
"rel": "bookmark"

}
]

},
"rax_key_name": null,
"rax_links": [

{
"href": "https://ord.servers.api.rackspacecloud.com/v2/111111/servers/

→˓099a447b-a644-471f-87b9-a7f580eb0c2a",
"rel": "self"

},
{

"href": "https://ord.servers.api.rackspacecloud.com/111111/servers/
→˓099a447b-a644-471f-87b9-a7f580eb0c2a",

"rel": "bookmark"
}

],
"rax_metadata": {

"foo": "bar"
},
"rax_name": "test",
"rax_name_attr": "name",
"rax_networks": {

"private": [
"192.0.2.2"

214 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

],
"public": [

"198.51.100.1",
"2001:DB8::2342"

]
},
"rax_os-dcf_diskconfig": "AUTO",
"rax_os-ext-sts_power_state": 1,
"rax_os-ext-sts_task_state": null,
"rax_os-ext-sts_vm_state": "active",
"rax_progress": 100,
"rax_status": "ACTIVE",
"rax_tenant_id": "111111",
"rax_updated": "2013-11-14T20:49:27Z",
"rax_user_id": "22222"

},
"changed": false

}

Use Cases

This section covers some additional usage examples built around a specific use case.

Network and Server

Create an isolated cloud network and build a server

- name: Build Servers on an Isolated Network
hosts: localhost
connection: local
gather_facts: False
tasks:
- name: Network create request

local_action:
module: rax_network
credentials: ~/.raxpub
label: my-net
cidr: 192.168.3.0/24
region: IAD
state: present

- name: Server create request
local_action:

module: rax
credentials: ~/.raxpub
name: web%04d.example.org
flavor: 2
image: ubuntu-1204-lts-precise-pangolin
disk_config: manual
networks:
- public
- my-net

region: IAD
state: present
count: 5

1.6. Detailed Guides 215

Ansible 2.2 Documentation, 2.4

exact_count: yes
group: web
wait: yes
wait_timeout: 360

register: rax

Complete Environment

Build a complete webserver environment with servers, custom networks and load balancers, install nginx and create a
custom index.html

- name: Build environment

hosts: localhost
connection: local
gather_facts: False
tasks:
- name: Load Balancer create request

local_action:
module: rax_clb
credentials: ~/.raxpub
name: my-lb
port: 80
protocol: HTTP
algorithm: ROUND_ROBIN
type: PUBLIC
timeout: 30
region: IAD
wait: yes
state: present
meta:
app: my-cool-app

register: clb

- name: Network create request
local_action:

module: rax_network
credentials: ~/.raxpub
label: my-net
cidr: 192.168.3.0/24
state: present
region: IAD

register: network

- name: Server create request
local_action:

module: rax
credentials: ~/.raxpub
name: web%04d.example.org
flavor: performance1-1
image: ubuntu-1204-lts-precise-pangolin
disk_config: manual
networks:
- public
- private
- my-net

216 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

region: IAD
state: present
count: 5
exact_count: yes
group: web
wait: yes

register: rax

- name: Add servers to web host group
local_action:

module: add_host
hostname: "{{ item.name }}"
ansible_host: "{{ item.rax_accessipv4 }}"
ansible_ssh_pass: "{{ item.rax_adminpass }}"
ansible_user: root
groups: web

with_items: "{{ rax.success }}"
when: rax.action == 'create'

- name: Add servers to Load balancer
local_action:

module: rax_clb_nodes
credentials: ~/.raxpub
load_balancer_id: "{{ clb.balancer.id }}"
address: "{{ item.rax_networks.private|first }}"
port: 80
condition: enabled
type: primary
wait: yes
region: IAD

with_items: "{{ rax.success }}"
when: rax.action == 'create'

- name: Configure servers
hosts: web
handlers:
- name: restart nginx

service: name=nginx state=restarted

tasks:
- name: Install nginx

apt: pkg=nginx state=latest update_cache=yes cache_valid_time=86400
notify:

- restart nginx

- name: Ensure nginx starts on boot
service: name=nginx state=started enabled=yes

- name: Create custom index.html
copy: content="{{ inventory_hostname }}" dest=/usr/share/nginx/www/index.html

owner=root group=root mode=0644

RackConnect and Managed Cloud

When using RackConnect version 2 or Rackspace Managed Cloud there are Rackspace automation tasks that are exe-
cuted on the servers you create after they are successfully built. If your automation executes before the RackConnect

1.6. Detailed Guides 217

Ansible 2.2 Documentation, 2.4

or Managed Cloud automation, you can cause failures and un-usable servers.

These examples show creating servers, and ensuring that the Rackspace automation has completed before Ansible
continues onwards.

For simplicity, these examples are joined, however both are only needed when using RackConnect. When only using
Managed Cloud, the RackConnect portion can be ignored.

The RackConnect portions only apply to RackConnect version 2.

Using a Control Machine

- name: Create an exact count of servers
hosts: localhost
connection: local
gather_facts: False
tasks:
- name: Server build requests

local_action:
module: rax
credentials: ~/.raxpub
name: web%03d.example.org
flavor: performance1-1
image: ubuntu-1204-lts-precise-pangolin
disk_config: manual
region: DFW
state: present
count: 1
exact_count: yes
group: web
wait: yes

register: rax

- name: Add servers to in memory groups
local_action:

module: add_host
hostname: "{{ item.name }}"
ansible_host: "{{ item.rax_accessipv4 }}"
ansible_ssh_pass: "{{ item.rax_adminpass }}"
ansible_user: root
rax_id: "{{ item.rax_id }}"
groups: web,new_web

with_items: "{{ rax.success }}"
when: rax.action == 'create'

- name: Wait for rackconnect and managed cloud automation to complete
hosts: new_web
gather_facts: false
tasks:
- name: Wait for rackconnnect automation to complete

local_action:
module: rax_facts
credentials: ~/.raxpub
id: "{{ rax_id }}"
region: DFW

register: rax_facts
until: rax_facts.ansible_facts['rax_metadata']['rackconnect_automation_status

→˓']|default('') == 'DEPLOYED'

218 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

retries: 30
delay: 10

- name: Wait for managed cloud automation to complete
local_action:

module: rax_facts
credentials: ~/.raxpub
id: "{{ rax_id }}"
region: DFW

register: rax_facts
until: rax_facts.ansible_facts['rax_metadata']['rax_service_level_automation

→˓']|default('') == 'Complete'
retries: 30
delay: 10

- name: Update new_web hosts with IP that RackConnect assigns
hosts: new_web
gather_facts: false
tasks:
- name: Get facts about servers

local_action:
module: rax_facts
name: "{{ inventory_hostname }}"
region: DFW

- name: Map some facts
set_fact:

ansible_host: "{{ rax_accessipv4 }}"

- name: Base Configure Servers
hosts: web
roles:
- role: users

- role: openssh
opensshd_PermitRootLogin: "no"

- role: ntp

Using Ansible Pull

- name: Ensure Rackconnect and Managed Cloud Automation is complete

hosts: all
connection: local
tasks:
- name: Check for completed bootstrap

stat:
path: /etc/bootstrap_complete

register: bootstrap

- name: Get region
command: xenstore-read vm-data/provider_data/region
register: rax_region
when: bootstrap.stat.exists != True

- name: Wait for rackconnect automation to complete

1.6. Detailed Guides 219

Ansible 2.2 Documentation, 2.4

uri:
url: "https://{{ rax_region.stdout|trim }}.api.rackconnect.rackspace.com/v1/

→˓automation_status?format=json"
return_content: yes

register: automation_status
when: bootstrap.stat.exists != True
until: automation_status['automation_status']|default('') == 'DEPLOYED'
retries: 30
delay: 10

- name: Wait for managed cloud automation to complete
wait_for:

path: /tmp/rs_managed_cloud_automation_complete
delay: 10

when: bootstrap.stat.exists != True

- name: Set bootstrap completed
file:

path: /etc/bootstrap_complete
state: touch
owner: root
group: root
mode: 0400

- name: Base Configure Servers
hosts: all
connection: local
roles:
- role: users

- role: openssh
opensshd_PermitRootLogin: "no"

- role: ntp

Using Ansible Pull with XenStore

- name: Ensure Rackconnect and Managed Cloud Automation is complete

hosts: all
connection: local
tasks:
- name: Check for completed bootstrap

stat:
path: /etc/bootstrap_complete

register: bootstrap

- name: Wait for rackconnect_automation_status xenstore key to exist
command: xenstore-exists vm-data/user-metadata/rackconnect_automation_status
register: rcas_exists
when: bootstrap.stat.exists != True
failed_when: rcas_exists.rc|int > 1
until: rcas_exists.rc|int == 0
retries: 30
delay: 10

220 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- name: Wait for rackconnect automation to complete
command: xenstore-read vm-data/user-metadata/rackconnect_automation_status
register: rcas
when: bootstrap.stat.exists != True
until: rcas.stdout|replace('"', '') == 'DEPLOYED'
retries: 30
delay: 10

- name: Wait for rax_service_level_automation xenstore key to exist
command: xenstore-exists vm-data/user-metadata/rax_service_level_automation
register: rsla_exists
when: bootstrap.stat.exists != True
failed_when: rsla_exists.rc|int > 1
until: rsla_exists.rc|int == 0
retries: 30
delay: 10

- name: Wait for managed cloud automation to complete
command: xenstore-read vm-data/user-metadata/rackconnect_automation_status
register: rsla
when: bootstrap.stat.exists != True
until: rsla.stdout|replace('"', '') == 'DEPLOYED'
retries: 30
delay: 10

- name: Set bootstrap completed
file:

path: /etc/bootstrap_complete
state: touch
owner: root
group: root
mode: 0400

- name: Base Configure Servers
hosts: all
connection: local
roles:
- role: users

- role: openssh
opensshd_PermitRootLogin: "no"

- role: ntp

Advanced Usage

Autoscaling with Tower

Ansible Tower also contains a very nice feature for auto-scaling use cases. In this mode, a simple curl script can call a
defined URL and the server will “dial out” to the requester and configure an instance that is spinning up. This can be
a great way to reconfigure ephemeral nodes. See the Tower documentation for more details.

A benefit of using the callback in Tower over pull mode is that job results are still centrally recorded and less informa-
tion has to be shared with remote hosts.

1.6. Detailed Guides 221

Ansible 2.2 Documentation, 2.4

Orchestration in the Rackspace Cloud

Ansible is a powerful orchestration tool, and rax modules allow you the opportunity to orchestrate complex tasks,
deployments, and configurations. The key here is to automate provisioning of infrastructure, like any other piece
of software in an environment. Complex deployments might have previously required manual manipulation of load
balancers, or manual provisioning of servers. Utilizing the rax modules included with Ansible, one can make the
deployment of additional nodes contingent on the current number of running nodes, or the configuration of a clustered
application dependent on the number of nodes with common metadata. One could automate the following scenarios,
for example:

• Servers that are removed from a Cloud Load Balancer one-by-one, updated, verified, and returned to the load
balancer pool

• Expansion of an already-online environment, where nodes are provisioned, bootstrapped, configured, and soft-
ware installed

• A procedure where app log files are uploaded to a central location, like Cloud Files, before a node is decommis-
sioned

• Servers and load balancers that have DNS records created and destroyed on creation and decommissioning,
respectively

Google Cloud Platform Guide

Introduction

: This section of the documentation is under construction. We are in the process of adding more examples about all
of the GCE modules and how they work together. Upgrades via github pull requests are welcomed!

Ansible contains modules for managing Google Compute Engine resources, including creating instances, controlling
network access, working with persistent disks, and managing load balancers. Additionally, there is an inventory plugin
that can automatically suck down all of your GCE instances into Ansible dynamic inventory, and create groups by tag
and other properties.

The GCE modules all require the apache-libcloud module which you can install from pip:

$ pip install apache-libcloud

: If you’re using Ansible on Mac OS X, libcloud also needs to access a CA cert chain. You’ll need to download one
(you can get one for here.)

Credentials

To work with the GCE modules, you’ll first need to get some credentials in the JSON format:

1. Create a Service Account

2. Download JSON credentials

There are three different ways to provide credentials to Ansible so that it can talk with Google Cloud for provisioning
and configuration actions:

222 Chapter 1. About Ansible

http://curl.haxx.se/docs/caextract.html
https://developers.google.com/identity/protocols/OAuth2ServiceAccount#creatinganaccount
https://support.google.com/cloud/answer/6158849?hl=en&ref_topic=6262490#serviceaccounts

Ansible 2.2 Documentation, 2.4

: If you would like to use JSON credentials you must have libcloud >= 0.17.0

• by providing to the modules directly

• by populating a secrets.py file

• by setting environment variables

Calling Modules By Passing Credentials

For the GCE modules you can specify the credentials as arguments:

• service_account_email: email associated with the project

• credentials_file: path to the JSON credentials file

• project_id: id of the project

For example, to create a new instance using the cloud module, you can use the following configuration:

- name: Create instance(s)
hosts: localhost
connection: local
gather_facts: no

vars:
service_account_email: unique-id@developer.gserviceaccount.com
credentials_file: /path/to/project.json
project_id: project-id
machine_type: n1-standard-1
image: debian-7

tasks:

- name: Launch instances
gce:

instance_names: dev
machine_type: "{{ machine_type }}"
image: "{{ image }}"
service_account_email: "{{ service_account_email }}"
credentials_file: "{{ credentials_file }}"
project_id: "{{ project_id }}"

When running Ansible inside a GCE VM you can use the service account credentials from the local metadata server
by setting both service_account_email and credentials_file to a blank string.

Configuring Modules with secrets.py

Create a file secrets.py looking like following, and put it in some folder which is in your $PYTHONPATH:

GCE_PARAMS = ('i...@project.googleusercontent.com', '/path/to/project.json')
GCE_KEYWORD_PARAMS = {'project': 'project_id'}

Ensure to enter the email address from the created services account and not the one from your main account.

Now the modules can be used as above, but the account information can be omitted.

1.6. Detailed Guides 223

Ansible 2.2 Documentation, 2.4

If you are running Ansible from inside a GCE VM with an authorized service account you can set the email address
and credentials path as follows so that get automatically picked up:

GCE_PARAMS = ('', '')
GCE_KEYWORD_PARAMS = {'project': 'project_id'}

Configuring Modules with Environment Variables

Set the following environment variables before running Ansible in order to configure your credentials:

GCE_EMAIL
GCE_PROJECT
GCE_CREDENTIALS_FILE_PATH

GCE Dynamic Inventory

The best way to interact with your hosts is to use the gce inventory plugin, which dynamically queries GCE and tells
Ansible what nodes can be managed.

Note that when using the inventory script gce.py, you also need to populate the gce.ini file that you can find in
the contrib/inventory directory of the ansible checkout.

To use the GCE dynamic inventory script, copy gce.py from contrib/inventory into your inventory directory
and make it executable. You can specify credentials for gce.py using the GCE_INI_PATH environment variable –
the default is to look for gce.ini in the same directory as the inventory script.

Let’s see if inventory is working:

$./gce.py --list

You should see output describing the hosts you have, if any, running in Google Compute Engine.

Now let’s see if we can use the inventory script to talk to Google.

$ GCE_INI_PATH=~/.gce.ini ansible all -i gce.py -m setup
hostname | success >> {

"ansible_facts": {
"ansible_all_ipv4_addresses": [

"x.x.x.x"
],

As with all dynamic inventory scripts in Ansible, you can configure the inventory path in ansible.cfg. The recom-
mended way to use the inventory is to create an inventory directory, and place both the gce.py script and a file
containing localhost in it. This can allow for cloud inventory to be used alongside local inventory (such as a
physical datacenter) or machines running in different providers.

Executing ansible or ansible-playbook and specifying the inventory directory instead of an individual
file will cause ansible to evaluate each file in that directory for inventory.

Let’s once again use our inventory script to see if it can talk to Google Cloud:

$ ansible all -i inventory/ -m setup
hostname | success >> {

"ansible_facts": {
"ansible_all_ipv4_addresses": [

"x.x.x.x"
],

224 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

The output should be similar to the previous command. If you’re wanting less output and just want to check for SSH
connectivity, use “-m” ping instead.

Use Cases

For the following use case, let’s use this small shell script as a wrapper.

#!/usr/bin/env bash
PLAYBOOK="$1"

if [[-z $PLAYBOOK]]; then
echo "You need to pass a playbook as argument to this script."
exit 1

fi

export SSL_CERT_FILE=$(pwd)/cacert.cer
export ANSIBLE_HOST_KEY_CHECKING=False

if [[! -f "$SSL_CERT_FILE"]]; then
curl -O http://curl.haxx.se/ca/cacert.pem

fi

ansible-playbook -v -i inventory/ "$PLAYBOOK"

Create an instance

The GCE module provides the ability to provision instances within Google Compute Engine. The provisioning task is
typically performed from your Ansible control server against Google Cloud’s API.

A playbook would looks like this:

- name: Create instance(s)
hosts: localhost
gather_facts: no
connection: local

vars:
machine_type: n1-standard-1 # default
image: debian-7
service_account_email: unique-id@developer.gserviceaccount.com
credentials_file: /path/to/project.json
project_id: project-id

tasks:
- name: Launch instances

gce:
instance_names: dev
machine_type: "{{ machine_type }}"
image: "{{ image }}"
service_account_email: "{{ service_account_email }}"
credentials_file: "{{ credentials_file }}"
project_id: "{{ project_id }}"
tags: webserver

register: gce

- name: Wait for SSH to come up

1.6. Detailed Guides 225

Ansible 2.2 Documentation, 2.4

wait_for: host={{ item.public_ip }} port=22 delay=10 timeout=60
with_items: "{{ gce.instance_data }}"

- name: Add host to groupname
add_host: hostname={{ item.public_ip }} groupname=new_instances
with_items: "{{ gce.instance_data }}"

- name: Manage new instances
hosts: new_instances
connection: ssh
sudo: True
roles:
- base_configuration
- production_server

Note that use of the “add_host” module above creates a temporary, in-memory group. This means that a play in
the same playbook can then manage machines in the ‘new_instances’ group, if so desired. Any sort of arbitrary
configuration is possible at this point.

Configuring instances in a group

All of the created instances in GCE are grouped by tag. Since this is a cloud, it’s probably best to ignore hostnames
and just focus on group management.

Normally we’d also use roles here, but the following example is a simple one. Here we will also use the “gce_net”
module to open up access to port 80 on these nodes.

The variables in the ‘vars’ section could also be kept in a ‘vars_files’ file or something encrypted with Ansible-vault,
if you so choose. This is just a basic example of what is possible:

- name: Setup web servers
hosts: tag_webserver
gather_facts: no

vars:
machine_type: n1-standard-1 # default
image: debian-7
service_account_email: unique-id@developer.gserviceaccount.com
credentials_file: /path/to/project.json
project_id: project-id

roles:

- name: Install lighttpd
apt: pkg=lighttpd state=installed
sudo: True

- name: Allow HTTP
local_action: gce_net
args:

fwname: "all-http"
name: "default"
allowed: "tcp:80"
state: "present"
service_account_email: "{{ service_account_email }}"
credentials_file: "{{ credentials_file }}"
project_id: "{{ project_id }}"

226 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

By pointing your browser to the IP of the server, you should see a page welcoming you.

Upgrades to this documentation are welcome, hit the github link at the top right of this page if you would like to make
additions!

CloudStack Cloud Guide

Introduction

The purpose of this section is to explain how to put Ansible modules together to use Ansible in a CloudStack context.
You will find more usage examples in the details section of each module.

Ansible contains a number of extra modules for interacting with CloudStack based clouds. All modules support check
mode, are designed to be idempotent, have been created and tested, and are maintained by the community.

: Some of the modules will require domain admin or root admin privileges.

Prerequisites

Prerequisites for using the CloudStack modules are minimal. In addition to Ansible itself, all of the modules require
the python library cs https://pypi.python.org/pypi/cs.

You’ll need this Python module installed on the execution host, usually your workstation.

$ pip install cs

Or alternatively starting with Debian 9 and Ubuntu 16.04:

$ sudo apt install python-cs

: cs also includes a command line interface for ad-hoc interaction with the CloudStack API e.g. $ cs
listVirtualMachines state=Running.

Limitations and Known Issues

VPC support has been improved since Ansible 2.3 but is still not yet fully implemented. The community is working
on the VPC integration.

Credentials File

You can pass credentials and the endpoint of your cloud as module arguments, however in most cases it is a far less
work to store your credentials in the cloudstack.ini file.

The python library cs looks for the credentials file in the following order (last one wins):

• A .cloudstack.ini (note the dot) file in the home directory.

• A CLOUDSTACK_CONFIG environment variable pointing to an .ini file.

• A cloudstack.ini (without the dot) file in the current working directory, same directory as your playbooks
are located.

1.6. Detailed Guides 227

https://pypi.python.org/pypi/cs

Ansible 2.2 Documentation, 2.4

The structure of the ini file must look like this:

$ cat $HOME/.cloudstack.ini
[cloudstack]
endpoint = https://cloud.example.com/client/api
key = api key
secret = api secret
timeout = 30

: The section [cloudstack] is the default section. CLOUDSTACK_REGION environment variable can be used to
define the default section.

2.4 .

The ENV variables support CLOUDSTACK_* as written in the documentation of the library cs, like e.g
CLOUDSTACK_TIMEOUT, CLOUDSTACK_METHOD, etc. has been implemented into Ansible. It is even possible
to have some incomplete config in your cloudstack.ini:

$ cat $HOME/.cloudstack.ini
[cloudstack]
endpoint = https://cloud.example.com/client/api
timeout = 30

and fulfill the missing data by either setting ENV variables or tasks params:

.. code-block:: yaml

- name: provision our VMs

hosts: cloud-vm
connection: local
tasks:

- name: ensure VMs are created and running
cs_instance:

api_key: your api key
api_secret: your api secret
...

Regions

If you use more than one CloudStack region, you can define as many sections as you want and name them as you like,
e.g.:

$ cat $HOME/.cloudstack.ini
[exoscale]
endpoint = https://api.exoscale.ch/compute
key = api key
secret = api secret

[exmaple_cloud_one]
endpoint = https://cloud-one.example.com/client/api
key = api key
secret = api secret

[exmaple_cloud_two]

228 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

endpoint = https://cloud-two.example.com/client/api
key = api key
secret = api secret

: Sections can also be used to for login into the same region using different accounts.

By passing the argument api_region with the CloudStack modules, the region wanted will be selected.

- name: ensure my ssh public key exists on Exoscale
local_action: cs_sshkeypair
name: my-ssh-key
public_key: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"
api_region: exoscale

Or by looping over a regions list if you want to do the task in every region:

- name: ensure my ssh public key exists in all CloudStack regions
local_action: cs_sshkeypair
name: my-ssh-key
public_key: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"
api_region: "{{ item }}"
with_items:

- exoscale
- exmaple_cloud_one
- exmaple_cloud_two

Environment Variables

2.3 .

Since Ansible 2.3 it is possible to use environment variables for domain (CLOUDSTACK_DOMAIN), ac-
count (CLOUDSTACK_ACCOUNT), project (CLOUDSTACK_PROJECT), VPC (CLOUDSTACK_VPC) and zone
(CLOUDSTACK_ZONE). This simplifies the tasks by not repeating the arguments for every tasks.

Below you see an example how it can be used in combination with Ansible’s block feature:

- hosts: cloud-vm
tasks:
- block:

- name: ensure my ssh public key
local_action:
module: cs_sshkeypair
name: my-ssh-key
public_key: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"

- name: ensure my ssh public key
local_action:
module: cs_instance:
display_name: "{{ inventory_hostname_short }}"
template: Linux Debian 7 64-bit 20GB Disk
service_offering: "{{ cs_offering }}"
ssh_key: my-ssh-key
state: running

environment:

1.6. Detailed Guides 229

Ansible 2.2 Documentation, 2.4

CLOUDSTACK_DOMAIN: root/customers
CLOUDSTACK_PROJECT: web-app
CLOUDSTACK_ZONE: sf-1

: You are still able overwrite the environment variables using the module arguments, e.g. zone: sf-2

: Unlike CLOUDSTACK_REGION these additional environment variables are ingored in the CLI cs.

Use Cases

The following should give you some ideas how to use the modules to provision VMs to the cloud. As always, there
isn’t only one way to do it. But as always: keep it simple for the beginning is always a good start.

Use Case: Provisioning in a Advanced Networking CloudStack setup

Our CloudStack cloud has an advanced networking setup, we would like to provision web servers, which get a static
NAT and open firewall ports 80 and 443. Further we provision database servers, to which we do not give any access
to. For accessing the VMs by SSH we use a SSH jump host.

This is how our inventory looks like:

[cloud-vm:children]
webserver
db-server
jumphost

[webserver]
web-01.example.com public_ip=198.51.100.20
web-02.example.com public_ip=198.51.100.21

[db-server]
db-01.example.com
db-02.example.com

[jumphost]
jump.example.com public_ip=198.51.100.22

As you can see, the public IPs for our web servers and jumphost has been assigned as variable public_ip directly
in the inventory.

The configure the jumphost, web servers and database servers, we use group_vars. The group_vars directory
contains 4 files for configuration of the groups: cloud-vm, jumphost, webserver and db-server. The cloud-vm is there
for specifying the defaults of our cloud infrastructure.

file: group_vars/cloud-vm

cs_offering: Small
cs_firewall: []

Our database servers should get more CPU and RAM, so we define to use a Large offering for them.

230 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

file: group_vars/db-server

cs_offering: Large

The web servers should get a Small offering as we would scale them horizontally, which is also our default offering.
We also ensure the known web ports are opened for the world.

file: group_vars/webserver

cs_firewall:

- { port: 80 }
- { port: 443 }

Further we provision a jump host which has only port 22 opened for accessing the VMs from our office IPv4 network.

file: group_vars/jumphost

cs_firewall:

- { port: 22, cidr: "17.17.17.0/24" }

Now to the fun part. We create a playbook to create our infrastructure we call it infra.yml:

file: infra.yaml

- name: provision our VMs

hosts: cloud-vm
connection: local
tasks:
- name: ensure VMs are created and running

cs_instance:
name: "{{ inventory_hostname_short }}"
template: Linux Debian 7 64-bit 20GB Disk
service_offering: "{{ cs_offering }}"
state: running

- name: ensure firewall ports opened
cs_firewall:

ip_address: "{{ public_ip }}"
port: "{{ item.port }}"
cidr: "{{ item.cidr | default('0.0.0.0/0') }}"

with_items: "{{ cs_firewall }}"
when: public_ip is defined

- name: ensure static NATs
cs_staticnat: vm="{{ inventory_hostname_short }}" ip_address="{{ public_ip }}"
when: public_ip is defined

In the above play we defined 3 tasks and use the group cloud-vm as target to handle all VMs in the cloud but instead
SSH to these VMs, we use connetion=local to execute the API calls locally from our workstation.

In the first task, we ensure we have a running VM created with the Debian template. If the VM is already created but
stopped, it would just start it. If you like to change the offering on an existing VM, you must add force: yes to
the task, which would stop the VM, change the offering and start the VM again.

In the second task we ensure the ports are opened if we give a public IP to the VM.

In the third task we add static NAT to the VMs having a public IP defined.

1.6. Detailed Guides 231

Ansible 2.2 Documentation, 2.4

: The public IP addresses must have been acquired in advance, also see cs_ip_address

: For some modules, e.g. cs_sshkeypair you usually want this to be executed only once, not for every VM.
Therefore you would make a separate play for it targeting localhost. You find an example in the use cases below.

Use Case: Provisioning on a Basic Networking CloudStack setup

A basic networking CloudStack setup is slightly different: Every VM gets a public IP directly assigned and security
groups are used for access restriction policy.

This is how our inventory looks like:

[cloud-vm:children]
webserver

[webserver]
web-01.example.com
web-02.example.com

The default for your VMs looks like this:

file: group_vars/cloud-vm

cs_offering: Small
cs_securitygroups: ['default']

Our webserver will also be in security group web:

file: group_vars/webserver

cs_securitygroups: ['default', 'web']

The playbook looks like the following:

file: infra.yaml

- name: cloud base setup

hosts: localhost
connection: local
tasks:
- name: upload ssh public key
cs_sshkeypair:

name: defaultkey
public_key: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"

- name: ensure security groups exist
cs_securitygroup:

name: "{{ item }}"
with_items:

- default
- web

- name: add inbound SSH to security group default

232 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

cs_securitygroup_rule:
security_group: default
start_port: "{{ item }}"
end_port: "{{ item }}"

with_items:
- 22

- name: add inbound TCP rules to security group web
cs_securitygroup_rule:

security_group: web
start_port: "{{ item }}"
end_port: "{{ item }}"

with_items:
- 80
- 443

- name: install VMs in the cloud
hosts: cloud-vm
connection: local
tasks:
- name: create and run VMs on CloudStack
cs_instance:

name: "{{ inventory_hostname_short }}"
template: Linux Debian 7 64-bit 20GB Disk
service_offering: "{{ cs_offering }}"
security_groups: "{{ cs_securitygroups }}"
ssh_key: defaultkey
state: Running

register: vm

- name: show VM IP
debug: msg="VM {{ inventory_hostname }} {{ vm.default_ip }}"

- name: assing IP to the inventory
set_fact: ansible_ssh_host={{ vm.default_ip }}

- name: waiting for SSH to come up
wait_for: port=22 host={{ vm.default_ip }} delay=5

In the first play we setup the security groups, in the second play the VMs will created be assigned to these groups.
Further you see, that we assign the public IP returned from the modules to the host inventory. This is needed as we
do not know the IPs we will get in advance. In a next step you would configure the DNS servers with these IPs for
accassing the VMs with their DNS name.

In the last task we wait for SSH to be accessible, so any later play would be able to access the VM by SSH without
failure.

Using Vagrant and Ansible

Introduction

Vagrant is a tool to manage virtual machine environments, and allows you to configure and use reproducible work
environments on top of various virtualization and cloud platforms. It also has integration with Ansible as a provisioner
for these virtual machines, and the two tools work together well.

This guide will describe how to use Vagrant 1.7+ and Ansible together.

1.6. Detailed Guides 233

http://vagrantup.com/

Ansible 2.2 Documentation, 2.4

If you’re not familiar with Vagrant, you should visit the documentation.

This guide assumes that you already have Ansible installed and working. Running from a Git checkout is fine. Follow
the Installation guide for more information.

Vagrant Setup

The first step once you’ve installed Vagrant is to create a Vagrantfile and customize it to suit your needs. This is
covered in detail in the Vagrant documentation, but here is a quick example that includes a section to use the Ansible
provisioner to manage a single machine:

This guide is optimized for Vagrant 1.7 and above.
Although versions 1.6.x should behave very similarly, it is recommended
to upgrade instead of disabling the requirement below.
Vagrant.require_version ">= 1.7.0"

Vagrant.configure(2) do |config|

config.vm.box = "ubuntu/trusty64"

Disable the new default behavior introduced in Vagrant 1.7, to
ensure that all Vagrant machines will use the same SSH key pair.
See https://github.com/mitchellh/vagrant/issues/5005
config.ssh.insert_key = false

config.vm.provision "ansible" do |ansible|
ansible.verbose = "v"
ansible.playbook = "playbook.yml"

end
end

Notice the config.vm.provision section that refers to an Ansible playbook called playbook.yml in the same
directory as the Vagrantfile. Vagrant runs the provisioner once the virtual machine has booted and is ready for
SSH access.

There are a lot of Ansible options you can configure in your Vagrantfile. Visit the Ansible Provisioner documen-
tation for more information.

$ vagrant up

This will start the VM, and run the provisioning playbook (on the first VM startup).

To re-run a playbook on an existing VM, just run:

$ vagrant provision

This will re-run the playbook against the existing VM.

Note that having the ansible.verbose option enabled will instruct Vagrant to show the full
ansible-playbook command used behind the scene, as illustrated by this example:

$ PYTHONUNBUFFERED=1 ANSIBLE_FORCE_COLOR=true ANSIBLE_HOST_KEY_CHECKING=false ANSIBLE_
→˓SSH_ARGS='-o UserKnownHostsFile=/dev/null -o ControlMaster=auto -o
→˓ControlPersist=60s' ansible-playbook --private-key=/home/someone/.vagrant.d/
→˓insecure_private_key --user=vagrant --connection=ssh --limit='machine1' --inventory-
→˓file=/home/someone/coding-in-a-project/.vagrant/provisioners/ansible/inventory/
→˓vagrant_ansible_inventory playbook.yml

234 Chapter 1. About Ansible

http://docs.vagrantup.com/v2/
http://docs.vagrantup.com/v2/provisioning/ansible.html
http://docs.vagrantup.com/v2/provisioning/ansible.html

Ansible 2.2 Documentation, 2.4

This information can be quite useful to debug integration issues and can also be used to manually execute Ansible
from a shell, as explained in the next section.

Running Ansible Manually

Sometimes you may want to run Ansible manually against the machines. This is faster than kicking vagrant
provision and pretty easy to do.

With our Vagrantfile example, Vagrant automatically creates an Ansible inventory file in .vagrant/
provisioners/ansible/inventory/vagrant_ansible_inventory. This inventory is configured ac-
cording to the SSH tunnel that Vagrant automatically creates. A typical automatically-created inventory file for a
single machine environment may look something like this:

Generated by Vagrant

default ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222

If you want to run Ansible manually, you will want to make sure to pass ansible or ansible-playbook com-
mands the correct arguments, at least for the username, the SSH private key and the inventory.

Here is an example using the Vagrant global insecure key (config.ssh.insert_key must be set to false in
your Vagrantfile):

$ ansible-playbook --private-key=~/.vagrant.d/insecure_private_key -u vagrant -i .
→˓vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory playbook.yml

Here is a second example using the random private key that Vagrant 1.7+ automatically configures for each new VM
(each key is stored in a path like .vagrant/machines/[machine name]/[provider]/private_key):

$ ansible-playbook --private-key=.vagrant/machines/default/virtualbox/private_key -u
→˓vagrant -i .vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory
→˓playbook.yml

Advanced Usages

The “Tips and Tricks” chapter of the Ansible Provisioner documentation provides detailed information about more
advanced Ansible features like:

• how to parallely execute a playbook in a multi-machine environment

• how to integrate a local ansible.cfg configuration file

:

Vagrant Home The Vagrant homepage with downloads

Vagrant Documentation Vagrant Documentation

Ansible Provisioner The Vagrant documentation for the Ansible provisioner

Vagrant Issue Tracker The open issues for the Ansible provisioner in the Vagrant project

Playbooks An introduction to playbooks

1.6. Detailed Guides 235

http://docs.vagrantup.com/v2/provisioning/ansible.html
http://www.vagrantup.com/
http://docs.vagrantup.com/v2/
http://docs.vagrantup.com/v2/provisioning/ansible.html
https://github.com/mitchellh/vagrant/issues?q=is%3Aopen+is%3Aissue+label%3Aprovisioners%2Fansible

Ansible 2.2 Documentation, 2.4

Continuous Delivery and Rolling Upgrades

Introduction

Continuous Delivery is the concept of frequently delivering updates to your software application.

The idea is that by updating more often, you do not have to wait for a specific timed period, and your organization gets
better at the process of responding to change.

Some Ansible users are deploying updates to their end users on an hourly or even more frequent basis – sometimes
every time there is an approved code change. To achieve this, you need tools to be able to quickly apply those updates
in a zero-downtime way.

This document describes in detail how to achieve this goal, using one of Ansible’s most complete example playbooks
as a template: lamp_haproxy. This example uses a lot of Ansible features: roles, templates, and group variables, and
it also comes with an orchestration playbook that can do zero-downtime rolling upgrades of the web application stack.

: Click here for the latest playbooks for this example.

The playbooks deploy Apache, PHP, MySQL, Nagios, and HAProxy to a CentOS-based set of servers.

We’re not going to cover how to run these playbooks here. Read the included README in the github project along
with the example for that information. Instead, we’re going to take a close look at every part of the playbook and
describe what it does.

Site Deployment

Let’s start with site.yml. This is our site-wide deployment playbook. It can be used to initially deploy the site, as
well as push updates to all of the servers:

This playbook deploys the whole application stack in this site.

Apply common configuration to all hosts
- hosts: all

roles:
- common

Configure and deploy database servers.
- hosts: dbservers

roles:
- db

Configure and deploy the web servers. Note that we include two roles
here, the 'base-apache' role which simply sets up Apache, and 'web'
which includes our example web application.

- hosts: webservers

roles:
- base-apache
- web

Configure and deploy the load balancer(s).

236 Chapter 1. About Ansible

https://github.com/ansible/ansible-examples/tree/master/lamp_haproxy

Ansible 2.2 Documentation, 2.4

- hosts: lbservers

roles:
- haproxy

Configure and deploy the Nagios monitoring node(s).
- hosts: monitoring

roles:
- base-apache
- nagios

: If you’re not familiar with terms like playbooks and plays, you should review Playbooks.

In this playbook we have 5 plays. The first one targets all hosts and applies the common role to all of the hosts. This
is for site-wide things like yum repository configuration, firewall configuration, and anything else that needs to apply
to all of the servers.

The next four plays run against specific host groups and apply specific roles to those servers. Along with the roles for
Nagios monitoring, the database, and the web application, we’ve implemented a base-apache role that installs and
configures a basic Apache setup. This is used by both the sample web application and the Nagios hosts.

Reusable Content: Roles

By now you should have a bit of understanding about roles and how they work in Ansible. Roles are a way to organize
content: tasks, handlers, templates, and files, into reusable components.

This example has six roles: common, base-apache, db, haproxy, nagios, and web. How you organize your
roles is up to you and your application, but most sites will have one or more common roles that are applied to all
systems, and then a series of application-specific roles that install and configure particular parts of the site.

Roles can have variables and dependencies, and you can pass in parameters to roles to modify their behavior. You can
read more about roles in the Playbook Roles and Include Statements section.

Configuration: Group Variables

Group variables are variables that are applied to groups of servers. They can be used in templates and in playbooks
to customize behavior and to provide easily-changed settings and parameters. They are stored in a directory called
group_vars in the same location as your inventory. Here is lamp_haproxy’s group_vars/all file. As you
might expect, these variables are applied to all of the machines in your inventory:

httpd_port: 80
ntpserver: 192.0.2.23

This is a YAML file, and you can create lists and dictionaries for more complex variable structures. In this case, we
are just setting two variables, one for the port for the web server, and one for the NTP server that our machines should
use for time synchronization.

Here’s another group variables file. This is group_vars/dbservers which applies to the hosts in the
dbservers group:

mysqlservice: mysqld

1.6. Detailed Guides 237

Ansible 2.2 Documentation, 2.4

mysql_port: 3306
dbuser: root
dbname: foodb
upassword: usersecret

If you look in the example, there are group variables for the webservers group and the lbservers group, simi-
larly.

These variables are used in a variety of places. You can use them in playbooks, like this, in roles/db/tasks/
main.yml:

- name: Create Application Database
mysql_db: name={{ dbname }} state=present

- name: Create Application DB User
mysql_user: name={{ dbuser }} password={{ upassword }}

priv=*.*:ALL host='%' state=present

You can also use these variables in templates, like this, in roles/common/templates/ntp.conf.j2:

driftfile /var/lib/ntp/drift

restrict 127.0.0.1
restrict -6 ::1

server {{ ntpserver }}

includefile /etc/ntp/crypto/pw

keys /etc/ntp/keys

You can see that the variable substitution syntax of {{ and }} is the same for both templates and variables. The
syntax inside the curly braces is Jinja2, and you can do all sorts of operations and apply different filters to the data
inside. In templates, you can also use for loops and if statements to handle more complex situations, like this, in
roles/common/templates/iptables.j2:

{% if inventory_hostname in groups['dbservers'] %}
-A INPUT -p tcp --dport 3306 -j ACCEPT
{% endif %}

This is testing to see if the inventory name of the machine we’re currently operating on (inventory_hostname)
exists in the inventory group dbservers. If so, that machine will get an iptables ACCEPT line for port 3306.

Here’s another example, from the same template:

{% for host in groups['monitoring'] %}
-A INPUT -p tcp -s {{ hostvars[host].ansible_default_ipv4.address }} --dport 5666 -j
→˓ACCEPT
{% endfor %}

This loops over all of the hosts in the group called monitoring, and adds an ACCEPT line for each monitoring
hosts’ default IPV4 address to the current machine’s iptables configuration, so that Nagios can monitor those hosts.

You can learn a lot more about Jinja2 and its capabilities here, and you can read more about Ansible variables in
general in the Variables section.

238 Chapter 1. About Ansible

http://jinja.pocoo.org/docs/

Ansible 2.2 Documentation, 2.4

The Rolling Upgrade

Now you have a fully-deployed site with web servers, a load balancer, and monitoring. How do you update it? This is
where Ansible’s orchestration features come into play. While some applications use the term ‘orchestration’ to mean
basic ordering or command-blasting, Ansible refers to orchestration as ‘conducting machines like an orchestra’, and
has a pretty sophisticated engine for it.

Ansible has the capability to do operations on multi-tier applications in a coordinated way, making it easy to orchestrate
a sophisticated zero-downtime rolling upgrade of our web application. This is implemented in a separate playbook,
called rolling_update.yml.

Looking at the playbook, you can see it is made up of two plays. The first play is very simple and looks like this:

- hosts: monitoring
tasks: []

What’s going on here, and why are there no tasks? You might know that Ansible gathers “facts” from the servers
before operating upon them. These facts are useful for all sorts of things: networking information, OS/distribution
versions, etc. In our case, we need to know something about all of the monitoring servers in our environment before
we perform the update, so this simple play forces a fact-gathering step on our monitoring servers. You will see this
pattern sometimes, and it’s a useful trick to know.

The next part is the update play. The first part looks like this:

- hosts: webservers
user: root
serial: 1

This is just a normal play definition, operating on the webservers group. The serial keyword tells Ansible how
many servers to operate on at once. If it’s not specified, Ansible will parallelize these operations up to the default
“forks” limit specified in the configuration file. But for a zero-downtime rolling upgrade, you may not want to operate
on that many hosts at once. If you had just a handful of webservers, you may want to set serial to 1, for one host at
a time. If you have 100, maybe you could set serial to 10, for ten at a time.

Here is the next part of the update play:

pre_tasks:
- name: disable nagios alerts for this host webserver service

nagios: action=disable_alerts host={{ inventory_hostname }} services=webserver
delegate_to: "{{ item }}"
with_items: "{{ groups.monitoring }}"

- name: disable the server in haproxy
shell: echo "disable server myapplb/{{ inventory_hostname }}" | socat stdio /var/

→˓lib/haproxy/stats
delegate_to: "{{ item }}"
with_items: "{{ groups.lbservers }}"

The pre_tasks keyword just lets you list tasks to run before the roles are called. This will make more sense in a
minute. If you look at the names of these tasks, you can see that we are disabling Nagios alerts and then removing the
webserver that we are currently updating from the HAProxy load balancing pool.

The delegate_to and with_items arguments, used together, cause Ansible to loop over each monitoring server
and load balancer, and perform that operation (delegate that operation) on the monitoring or load balancing server, “on
behalf” of the webserver. In programming terms, the outer loop is the list of web servers, and the inner loop is the list
of monitoring servers.

Note that the HAProxy step looks a little complicated. We’re using HAProxy in this example because it’s freely
available, though if you have (for instance) an F5 or Netscaler in your infrastructure (or maybe you have an AWS

1.6. Detailed Guides 239

Ansible 2.2 Documentation, 2.4

Elastic IP setup?), you can use modules included in core Ansible to communicate with them instead. You might also
wish to use other monitoring modules instead of nagios, but this just shows the main goal of the ‘pre tasks’ section –
take the server out of monitoring, and take it out of rotation.

The next step simply re-applies the proper roles to the web servers. This will cause any configuration management
declarations in web and base-apache roles to be applied to the web servers, including an update of the web
application code itself. We don’t have to do it this way–we could instead just purely update the web application, but
this is a good example of how roles can be used to reuse tasks:

roles:
- common
- base-apache
- web

Finally, in the post_tasks section, we reverse the changes to the Nagios configuration and put the web server back
in the load balancing pool:

post_tasks:
- name: Enable the server in haproxy

shell: echo "enable server myapplb/{{ inventory_hostname }}" | socat stdio /var/lib/
→˓haproxy/stats
delegate_to: "{{ item }}"
with_items: "{{ groups.lbservers }}"

- name: re-enable nagios alerts
nagios: action=enable_alerts host={{ inventory_hostname }} services=webserver
delegate_to: "{{ item }}"
with_items: "{{ groups.monitoring }}"

Again, if you were using a Netscaler or F5 or Elastic Load Balancer, you would just substitute in the appropriate
modules instead.

Managing Other Load Balancers

In this example, we use the simple HAProxy load balancer to front-end the web servers. It’s easy to configure and
easy to manage. As we have mentioned, Ansible has built-in support for a variety of other load balancers like Citrix
NetScaler, F5 BigIP, Amazon Elastic Load Balancers, and more. See the About Modules documentation for more
information.

For other load balancers, you may need to send shell commands to them (like we do for HAProxy above), or call an
API, if your load balancer exposes one. For the load balancers for which Ansible has modules, you may want to run
them as a local_action if they contact an API. You can read more about local actions in the Delegation, Rolling
Updates, and Local Actions section. Should you develop anything interesting for some hardware where there is not a
core module, it might make for a good module for core inclusion!

Continuous Delivery End-To-End

Now that you have an automated way to deploy updates to your application, how do you tie it all together? A lot of
organizations use a continuous integration tool like Jenkins or Atlassian Bamboo to tie the development, test, release,
and deploy steps together. You may also want to use a tool like Gerrit to add a code review step to commits to either
the application code itself, or to your Ansible playbooks, or both.

Depending on your environment, you might be deploying continuously to a test environment, running an integration
test battery against that environment, and then deploying automatically into production. Or you could keep it simple
and just use the rolling-update for on-demand deployment into test or production specifically. This is all up to you.

240 Chapter 1. About Ansible

http://jenkins-ci.org/
https://www.atlassian.com/software/bamboo
https://code.google.com/p/gerrit/

Ansible 2.2 Documentation, 2.4

For integration with Continuous Integration systems, you can easily trigger playbook runs using the
ansible-playbook command line tool, or, if you’re using Ansible Tower, the tower-cli or the built-in REST
API. (The tower-cli command ‘joblaunch’ will spawn a remote job over the REST API and is pretty slick).

This should give you a good idea of how to structure a multi-tier application with Ansible, and orchestrate operations
upon that app, with the eventual goal of continuous delivery to your customers. You could extend the idea of the
rolling upgrade to lots of different parts of the app; maybe add front-end web servers along with application servers,
for instance, or replace the SQL database with something like MongoDB or Riak. Ansible gives you the capability to
easily manage complicated environments and automate common operations.

:

lamp_haproxy example The lamp_haproxy example discussed here.

Playbooks An introduction to playbooks

Playbook Roles and Include Statements An introduction to playbook roles

Variables An introduction to Ansible variables

Ansible.com: Continuous Delivery An introduction to Continuous Delivery with Ansible

Getting Started with Docker

Ansible offers the following modules for orchestrating Docker containers:

docker_service Use your existing Docker compose files to orchestrate containers on a single Docker
daemon or on Swarm. Supports compose versions 1 and 2.

docker_container Manages the container lifecycle by providing the ability to create, update, stop, start
and destroy a container.

docker_image Provides full control over images, including: build, pull, push, tag and remove.

docker_image_facts Inspects one or more images in the Docker host’s image cache, providing the infor-
mation as facts for making decision or assertions in a playbook.

docker_login Authenticates with Docker Hub or any Docker registry and updates the Docker Engine
config file, which in turn provides password-free pushing and pulling of images to and from the
registry.

docker (dynamic inventory) Dynamically builds an inventory of all the available containers from a set
of one or more Docker hosts.

Ansible 2.1.0 includes major updates to the Docker modules, marking the start of a project to create a complete and
integrated set of tools for orchestrating containers. In addition to the above modules, we are also working on the
following:

Still using Dockerfile to build images? Check out ansible-container, and start building images from your Ansible
playbooks.

Use the shipit command in ansible-container to launch your docker-compose file on OpenShift. Go from an app on
your laptop to a fully scalable app in the cloud in just a few moments.

There’s more planned. See the latest ideas and thinking at the Ansible proposal repo.

Requirements

Using the docker modules requires having docker-py installed on the host running Ansible. You will need to have >=
1.7.0 installed.

1.6. Detailed Guides 241

https://github.com/ansible/ansible-examples/tree/master/lamp_haproxy
https://www.ansible.com/ansible-continuous-delivery
https://github.com/ansible/ansible-container
https://github.com/ansible/ansible-container
https://www.openshift.org/
https://github.com/ansible/proposals/tree/master/docker
https://docker-py.readthedocs.org/en/stable/

Ansible 2.2 Documentation, 2.4

$ pip install 'docker-py>=1.7.0'

The docker_service module also requires docker-compose

$ pip install 'docker-compose>=1.7.0'

Connecting to the Docker API

You can connect to a local or remote API using parameters passed to each task or by setting environment variables.
The order of precedence is command line parameters and then environment variables. If neither a command line option
or an environment variable is found, a default value will be used. The default values are provided under Parameters

Parameters

Control how modules connect to the Docker API by passing the following parameters:

docker_host The URL or Unix socket path used to connect to the Docker API. Defaults to unix://
var/run/docker.sock. To connect to a remote host, provide the TCP connection string. For
example: tcp://192.0.2.23:2376. If TLS is used to encrypt the connection to the API, then
the module will automatically replace ‘tcp’ in the connection URL with ‘https’.

api_version The version of the Docker API running on the Docker Host. Defaults to the latest version of
the API supported by docker-py.

timeout The maximum amount of time in seconds to wait on a response from the API. Defaults to 60
seconds.

tls Secure the connection to the API by using TLS without verifying the authenticity of the Docker host
server. Defaults to False.

tls_verify Secure the connection to the API by using TLS and verifying the authenticity of the Docker
host server. Default is False.

cacert_path Use a CA certificate when performing server verification by providing the path to a CA
certificate file.

cert_path Path to the client’s TLS certificate file.

key_path Path to the client’s TLS key file.

tls_hostname When verifying the authenticity of the Docker Host server, provide the expected name of
the server. Defaults to ‘localhost’.

ssl_version Provide a valid SSL version number. Default value determined by docker-py, which at the
time of this writing was 1.0

Environment Variables

Control how the modules connect to the Docker API by setting the following variables in the environment of the host
running Ansible:

DOCKER_HOST The URL or Unix socket path used to connect to the Docker API.

DOCKER_API_VERSION The version of the Docker API running on the Docker Host. Defaults to the
latest version of the API supported by docker-py.

DOCKER_TIMEOUT The maximum amount of time in seconds to wait on a response from the API.

242 Chapter 1. About Ansible

https://github.com/docker/compose

Ansible 2.2 Documentation, 2.4

DOCKER_CERT_PATH Path to the directory containing the client certificate, client key and CA cer-
tificate.

DOCKER_SSL_VERSION Provide a valid SSL version number.

DOCKER_TLS Secure the connection to the API by using TLS without verifying the authenticity of the
Docker Host.

DOCKER_TLS_VERIFY Secure the connection to the API by using TLS and verify the authenticity
of the Docker Host.

Dynamic Inventory Script

The inventory script generates dynamic inventory by making API requests to one or more Docker APIs. It’s dynamic
because the inventory is generated at run-time rather than being read from a static file. The script generates the
inventory by connecting to one or many Docker APIs and inspecting the containers it finds at each API. Which APIs
the script contacts can be defined using environment variables or a configuration file.

Groups

The script will create the following host groups:

• container id

• container name

• container short id

• image_name (image_<image name>)

• docker_host

• running

• stopped

Examples

You can run the script interactively from the command line or pass it as the inventory to a playbook. Here are few
examples to get you started:

Connect to the Docker API on localhost port 4243 and format the JSON output
DOCKER_HOST=tcp://localhost:4243 ./docker.py --pretty

Any container's ssh port exposed on 0.0.0.0 will be mapped to
another IP address (where Ansible will attempt to connect via SSH)
DOCKER_DEFAULT_IP=192.0.2.5 ./docker.py --pretty

Run as input to a playbook:
ansible-playbook -i ~/projects/ansible/contrib/inventory/docker.py docker_inventory_
→˓test.yml

Simple playbook to invoke with the above example:

- name: Test docker_inventory
hosts: all
connection: local
gather_facts: no

1.6. Detailed Guides 243

Ansible 2.2 Documentation, 2.4

tasks:
- debug: msg="Container - {{ inventory_hostname }}"

Configuration

You can control the behavior of the inventory script by defining environment variables, or creating a docker.yml file
(sample provided in ansible/contrib/inventory). The order of precedence is the docker.yml file and then environment
variables.

Environment Variables

To connect to a single Docker API the following variables can be defined in the environment to control the connection
options. These are the same environment variables used by the Docker modules.

DOCKER_HOST The URL or Unix socket path used to connect to the Docker API. Defaults to
unix://var/run/docker.sock.

DOCKER_API_VERSION: The version of the Docker API running on the Docker Host. Defaults to
the latest version of the API supported by docker-py.

DOCKER_TIMEOUT: The maximum amount of time in seconds to wait on a response fromm the API.
Defaults to 60 seconds.

DOCKER_TLS: Secure the connection to the API by using TLS without verifying the authenticity of
the Docker host server. Defaults to False.

DOCKER_TLS_VERIFY: Secure the connection to the API by using TLS and verifying the authentic-
ity of the Docker host server. Default is False

DOCKER_TLS_HOSTNAME: When verifying the authenticity of the Docker Host server, provide the
expected name of the server. Defaults to localhost.

DOCKER_CERT_PATH: Path to the directory containing the client certificate, client key and CA cer-
tificate.

DOCKER_SSL_VERSION: Provide a valid SSL version number. Default value determined by docker-
py, which at the time of this writing was 1.0

In addition to the connection variables there are a couple variables used to control the execution and output of the
script:

DOCKER_CONFIG_FILE Path to the configuration file. Defaults to ./docker.yml.

DOCKER_PRIVATE_SSH_PORT: The private port (container port) on which SSH is listening for
connections. Defaults to 22.

DOCKER_DEFAULT_IP: The IP address to assign to ansible_host when the container’s SSH port is
mapped to interface ‘0.0.0.0’.

Configuration File

Using a configuration file provides a means for defining a set of Docker APIs from which to build an inventory.

The default name of the file is derived from the name of the inventory script. By default the script will look for
basename of the script (i.e. docker) with an extension of ‘.yml’.

You can also override the default name of the script by defining DOCKER_CONFIG_FILE in the environment.

244 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Here’s what you can define in docker_inventory.yml:

defaults Defines a default connection. Defaults will be taken from this and applied to any values not
provided for a host defined in the hosts list.

hosts If you wish to get inventory from more than one Docker host, define a hosts list.

For the default host and each host in the hosts list define the following attributes:

host:
description: The URL or Unix socket path used to connect to the Docker API.
required: yes

tls:
description: Connect using TLS without verifying the authenticity of the Docker

→˓host server.
default: false
required: false

tls_verify:
description: Connect using TLS without verifying the authenticity of the Docker

→˓host server.
default: false
required: false

cert_path:
description: Path to the client's TLS certificate file.
default: null
required: false

cacert_path:
description: Use a CA certificate when performing server verification by providing

→˓the path to a CA certificate file.
default: null
required: false

key_path:
description: Path to the client's TLS key file.
default: null
required: false

version:
description: The Docker API version.
required: false
default: will be supplied by the docker-py module.

timeout:
description: The amount of time in seconds to wait on an API response.
required: false
default: 60

default_ip:
description: The IP address to assign to ansible_host when the container's SSH

→˓port is mapped to interface
'0.0.0.0'.
required: false
default: 127.0.0.1

private_ssh_port:
description: The port containers use for SSH

1.6. Detailed Guides 245

Ansible 2.2 Documentation, 2.4

required: false
default: 22

Using Ansible with the Packet host

Introduction

Packet.net is a bare metal infrastructure host that’s supported by Ansible (>=2.3) via a dynamic inventory script and
two cloud modules. The two modules are:

• packet_sshkey: adds a public SSH key from file or value to the Packet infrastructure. Every subsequently-created
device will have this public key installed in .ssh/authorized_keys.

• packet_device: manages servers on Packet. You can use this module to create, restart and delete devices.

Note, this guide assumes you are familiar with Ansible and how it works. If you’re not, have a look at their docs before
getting started.

Requirements

The Packet modules and inventory script connect to the Packet API using the packet-python package. You can install
it with pip:

$ pip install packet-python

In order to check the state of devices created by Ansible on Packet, it’s a good idea to install one of the Packet CLI
clients. Otherwise you can check them via the Packet portal.

To use the modules and inventory script you’ll need a Packet API token. You can generate an API token via the Packet
portal here. The simplest way to authenticate yourself is to set the Packet API token in an environment variable:

$ export PACKET_API_TOKEN=Bfse9F24SFtfs423Gsd3ifGsd43sSdfs

If you’re not comfortable exporting your API token, you can pass it as a parameter to the modules.

On Packet, devices and reserved IP addresses belong to projects. In order to use the packet_device module, you need
to specify the UUID of the project in which you want to create or manage devices. You can find a project’s UUID in
the Packet portal here (it’s just under the project table) or via one of the available CLIs.

If you want to use a new SSH keypair in this tutorial, you can generate it to ./id_rsa and ./id_rsa.pub as:

$ ssh-keygen -t rsa -f ./id_rsa

If you want to use an existing keypair, just copy the private and public key over to the playbook directory.

Device Creation

The following code block is a simple playbook that creates one Type 0 server (the ‘plan’ parameter). You have to
supply ‘plan’ and ‘operating_system’. ‘location’ defaults to ‘ewr1’ (Parsippany, NJ). You can find all the possible
values for the parameters via a CLI client.

playbook_create.yml

- name: create ubuntu device
hosts: localhost

246 Chapter 1. About Ansible

https://packet.net
http://docs.ansible.com/
https://www.packet.net/developers/integrations/api-cli/
https://www.packet.net/developers/integrations/api-cli/
https://app.packet.net/portal
https://app.packet.net/portal#/api-keys
https://www.packet.net/developers/api/projects/
https://app.packet.net/portal#/projects/list/table/
https://www.packet.net/developers/integrations/api-cli/
https://www.packet.net/bare-metal/servers/type-0/
https://www.packet.net/developers/integrations/api-cli/

Ansible 2.2 Documentation, 2.4

tasks:

- packet_sshkey:
key_file: ./id_rsa.pub
label: tutorial key

- packet_device:
project_id: <your_project_id>
hostnames: myserver
operating_system: ubuntu_16_04
plan: baremetal_0
facility: sjc1

After running ansible-playbook playbook_create.yml, you should have a server provisioned on Packet.
You can verify via a CLI or in the Packet portal.

If you get an error with the message “failed to set machine state present, error: Error 404: Not Found”, please verify
your project UUID.

Updating Devices

The two parameters used to uniquely identify Packet devices are: “device_ids” and “hostnames”. Both parameters
accept either a single string (later converted to a one-element list), or a list of strings.

The ‘device_ids’ and ‘hostnames’ parameters are mutually exclusive. The following values are all acceptable:

• device_ids: a27b7a83-fc93-435b-a128-47a5b04f2dcf

• hostnames: mydev1

• device_ids: [a27b7a83-fc93-435b-a128-47a5b04f2dcf, 4887130f-0ccd-49a0-99b0-323c1ceb527b]

• hostnames: [mydev1, mydev2]

In addition, hostnames can contain a special ‘%d’ formatter along with a ‘count’ parameter that lets you easily expand
hostnames that follow a simple name and number pattern; i.e. hostnames: "mydev%d", count: 2 will
expand to [mydev1, mydev2].

If your playbook acts on existing Packet devices, you can only pass the ‘hostname’ and ‘device_ids’ parameters. The
following playbook shows how you can reboot a specific Packet device by setting the ‘hostname’ parameter:

playbook_reboot.yml

- name: reboot myserver
hosts: localhost
tasks:

- packet_device:
project_id: <your_project_id>
hostnames: myserver
state: rebooted

You can also identify specific Packet devices with the ‘device_ids’ parameter. The device’s UUID can be found in the
Packet Portal or by using a CLI. The following playbook removes a Packet device using the ‘device_ids’ field:

playbook_remove.yml

- name: remove a device
hosts: localhost

1.6. Detailed Guides 247

https://app.packet.net/portal#/projects/list/table
https://app.packet.net/portal
https://www.packet.net/developers/integrations/api-cli/

Ansible 2.2 Documentation, 2.4

tasks:

- packet_device:
project_id: <your_project_id>
device_ids: <myserver_device_id>
state: absent

More Complex Playbooks

In this example, we’ll create a CoreOS cluster with user data.

The CoreOS cluster will use etcd for discovery of other servers in the cluster. Before provisioning your servers, you’ll
need to generate a discovery token for your cluster:

$ curl -w "\n" 'https://discovery.etcd.io/new?size=3'

The following playbook will create an SSH key, 3 Packet servers, and then wait until SSH is ready (or until 5 min-
utes passed). Make sure to substitute the discovery token URL in ‘user_data’, and the ‘project_id’ before running
ansible-playbook. Also, feel free to change ‘plan’ and ‘facility’.

playbook_coreos.yml

- name: Start 3 CoreOS nodes in Packet and wait until SSH is ready
hosts: localhost
tasks:

- packet_sshkey:
key_file: ./id_rsa.pub
label: new

- packet_device:
hostnames: [coreos-one, coreos-two, coreos-three]
operating_system: coreos_beta
plan: baremetal_0
facility: ewr1
project_id: <your_project_id>
wait: true
user_data: |

#cloud-config
coreos:
etcd2:
discovery: https://discovery.etcd.io/<token>
advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
initial-advertise-peer-urls: http://$private_ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://$private_ipv4:2380

fleet:
public-ip: $private_ipv4

units:
- name: etcd2.service
command: start

- name: fleet.service
command: start

register: newhosts

- name: wait for ssh
wait_for:

248 Chapter 1. About Ansible

https://support.packet.net/en/support/solutions/articles/22000058261-the-basics-of-cloud-config-and-user-data
https://coreos.com/etcd/

Ansible 2.2 Documentation, 2.4

delay: 1
host: "{{ item.public_ipv4 }}"
port: 22
state: started
timeout: 500

with_items: "{{ newhosts.devices }}"

As with most Ansible modules, the default states of the Packet modules are idempotent, meaning the resources in your
project will remain the same after re-runs of a playbook. Thus, we can keep the packet_sshkey module call in our
playbook. If the public key is already in your Packet account, the call will have no effect.

The second module call provisions 3 Packet Type 0 (specified using the ‘plan’ parameter) servers in the project iden-
tified via the ‘project_id’ parameter. The servers are all provisioned with CoresOS beta (the ‘operating_system’
parameter) and are customized with cloud-config user data passed to the ‘user_data’ parameter.

The packet_device module has a boolean ‘wait’ parameter that defaults to ‘false’. If set to ‘true’, Ansible will
wait until the GET API call for a device will contain an Internet-routeable IP address. The ‘wait’ parameter allows us
to use the IP address of the device as soon as it’s available.

Run the playbook:

$ ansible-playbook playbook_coreos.yml

Once the playbook quits, your new devices should be reachable via SSH. Try to connect to one and check if etcd has
started properly:

tomk@work $ ssh -i id_rsa core@$one_of_the_servers_ip
core@coreos-one ~ $ etcdctl cluster-health

Once you create a couple of devices, you might appreciate the dynamic inventory script...

Dynamic Inventory Script

The dynamic inventory script queries the Packet API for a list of hosts, and exposes it to Ansible so you can easily
identify and act on Packet devices. You can find it in Ansible’s git repo at contrib/inventory/packet_net.py.

The inventory script is configurable via a ini file.

If you want to use the inventory script, you must first export your Packet API token to a PACKET_API_TOKEN
environment variable.

You can either copy the inventory and ini config out from the cloned git repo, or you can download it to your working
directory like so:

$ wget https://github.com/ansible/ansible/raw/devel/contrib/inventory/packet_net.py
$ chmod +x packet_net.py
$ wget https://github.com/ansible/ansible/raw/devel/contrib/inventory/packet_net.ini

In order to understand what the inventory script gives to Ansible you can run:

$./packet_net.py --list

It should print a JSON document looking similar to following trimmed dictionary:

{
"_meta": {
"hostvars": {

"147.75.64.169": {

1.6. Detailed Guides 249

https://github.com/ansible/ansible/blob/devel/contrib/inventory/packet_net.py
https://github.com/ansible/ansible/blob/devel/contrib/inventory/packet_net.ini

Ansible 2.2 Documentation, 2.4

"packet_billing_cycle": "hourly",
"packet_created_at": "2017-02-09T17:11:26Z",
"packet_facility": "ewr1",
"packet_hostname": "coreos-two",
"packet_href": "/devices/d0ab8972-54a8-4bff-832b-28549d1bec96",
"packet_id": "d0ab8972-54a8-4bff-832b-28549d1bec96",
"packet_locked": false,
"packet_operating_system": "coreos_beta",
"packet_plan": "baremetal_0",
"packet_state": "active",
"packet_updated_at": "2017-02-09T17:16:35Z",
"packet_user": "core",
"packet_userdata": "#cloud-config\ncoreos:\n etcd2:\n discovery: https://

→˓discovery.etcd.io/e0c8a4a9b8fe61acd51ec599e2a4f68e\n advertise-client-urls:
→˓http://$private_ipv4:2379,http://$private_ipv4:4001\n initial-advertise-peer-
→˓urls: http://$private_ipv4:2380\n listen-client-urls: http://0.0.0.0:2379,http://
→˓0.0.0.0:4001\n listen-peer-urls: http://$private_ipv4:2380\n fleet:\n public-
→˓ip: $private_ipv4\n units:\n - name: etcd2.service\n command: start\n -
→˓name: fleet.service\n command: start"

}
}

},
"baremetal_0": [
"147.75.202.255",
"147.75.202.251",
"147.75.202.249",
"147.75.64.129",
"147.75.192.51",
"147.75.64.169"

],
"coreos_beta": [
"147.75.202.255",
"147.75.202.251",
"147.75.202.249",
"147.75.64.129",
"147.75.192.51",
"147.75.64.169"

],
"ewr1": [
"147.75.64.129",
"147.75.192.51",
"147.75.64.169"

],
"sjc1": [
"147.75.202.255",
"147.75.202.251",
"147.75.202.249"

],
"coreos-two": [
"147.75.64.169"

],
"d0ab8972-54a8-4bff-832b-28549d1bec96": [
"147.75.64.169"

]
}

In the ['_meta']['hostvars'] key, there is a list of devices (uniquely identified by their public IPv4 address)
with their parameters. The other keys under ['_meta'] are lists of devices grouped by some parameter. Here, it is

250 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

type (all devices are of type baremetal_0), operating system, and facility (ewr1 and sjc1).

In addition to the parameter groups, there are also one-item groups with the UUID or hostname of the device.

You can now target groups in playbooks! The following playbook will install a role that supplies resources for an
Ansible target into all devices in the “coreos_beta” group:

playbook_bootstrap.yml

- hosts: coreos_beta
gather_facts: false
roles:
- defunctzombie.coreos-boostrap

Don’t forget to supply the dynamic inventory in the -i argument!

$ ansible-playbook -u core -i packet_net.py playbook_bootstrap.yml

If you have any questions or comments let us know! help@packet.net

Pending topics may include: Docker, Jenkins, Google Compute Engine, Linode/DigitalOcean, Continuous Deploy-
ment, and more.

Developer Information

Ansible Developer Guide

Welcome to the Ansible Developer Guide!

The purpose of this guide is to document all of the paths available to you for interacting and shaping Ansible with
code, ranging from developing modules and plugins to helping to develop the Ansible Core Engine via pull requests.

To get started, select one of the following topics.

Ansible Architecture

Ansible is a radically simple IT automation engine that automates cloud provisioning, configuration management,
application deployment, intra-service orchestration, and many other IT needs.

Being designed for multi-tier deployments since day one, Ansible models your IT infrastructure by describing how all
of your systems inter-relate, rather than just managing one system at a time.

It uses no agents and no additional custom security infrastructure, so it’s easy to deploy - and most importantly, it uses
a very simple language (YAML, in the form of Ansible Playbooks) that allow you to describe your automation jobs in
a way that approaches plain English.

In this section, we’ll give you a really quick overview of how Ansible works so you can see how the pieces fit together.

Modules

Ansible works by connecting to your nodes and pushing out small programs, called “Ansible Modules” to them. These
programs are written to be resource models of the desired state of the system. Ansible then executes these modules
(over SSH by default), and removes them when finished.

1.7. Developer Information 251

mailto:help@packet.net

Ansible 2.2 Documentation, 2.4

Your library of modules can reside on any machine, and there are no servers, daemons, or databases required. Typically
you’ll work with your favorite terminal program, a text editor, and probably a version control system to keep track of
changes to your content.

Plugins

Plugins are pieces of code that augment Ansible’s core functionality. Ansible ships with a number of handy plugins,
and you can easily write your own.

Inventory

By default, Ansible represents what machines it manages using a very simple INI file that puts all of your managed
machines in groups of your own choosing.

To add new machines, there is no additional SSL signing server involved, so there’s never any hassle deciding why a
particular machine didn’t get linked up due to obscure NTP or DNS issues.

If there’s another source of truth in your infrastructure, Ansible can also plugin to that, such as drawing inventory,
group, and variable information from sources like EC2, Rackspace, OpenStack, and more.

Here’s what a plain text inventory file looks like:

[webservers]
www1.example.com
www2.example.com

[dbservers]
db0.example.com
db1.example.com

Once inventory hosts are listed, variables can be assigned to them in simple text files (in a subdirectory called
‘group_vars/’ or ‘host_vars/’ or directly in the inventory file.

Or, as already mentioned, use a dynamic inventory to pull your inventory from data sources like EC2, Rackspace, or
OpenStack.

Playbooks

Playbooks can finely orchestrate multiple slices of your infrastructure topology, with very detailed control over how
many machines to tackle at a time. This is where Ansible starts to get most interesting.

Ansible’s approach to orchestration is one of finely-tuned simplicity, as we believe your automation code should make
perfect sense to you years down the road and there should be very little to remember about special syntax or features.

Here’s what a simple playbook looks like:

- hosts: webservers
serial: 5 # update 5 machines at a time
roles:
- common
- webapp

- hosts: content_servers
roles:

252 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

- common
- content

Extending Ansible with Plug-ins and the API

Should you want to write your own, Ansible modules can be written in any language that can return JSON (Ruby,
Python, bash, etc). Inventory can also plug in to any datasource by writing a program that speaks to that datasource
and returns JSON. There’s also various Python APIs for extending Ansible’s connection types (SSH is not the only
transport possible), callbacks (how Ansible logs, etc), and even for adding new server side behaviors.

Developing Modules

Topics

• Developing Modules

– Welcome

– Should You Develop A Module?

– How To Develop A Module

– Appendix: Module Utilities

Welcome

This section discusses how to develop, debug, review, and test modules.

Ansible modules are reusable, standalone scripts that can be used by the Ansible API, or by the ansible or
ansible-playbook programs. They return information to ansible by printing a JSON string to stdout before
exiting. They take arguments in one of several ways which we’ll go into as we work through this tutorial.

See About Modules for a list of existing modules.

Modules can be written in any language and are found in the path specified by ANSIBLE_LIBRARY or the
--module-path command line option or in the library section of the Ansible configuration file.

Should You Develop A Module?

Before diving into the work of creating a new module, you should think about whether you actually should develop a
module. Ask the following questions:

1. Does a similar module already exist?

There are a lot of existing modules available, and more that are in development. You should check out the list of
existing modules at About Modules or look at the module PRs for the ansible repository on Github to see if a module
that does what you want exists or is in development.

2. Should you use or develop an action plugin instead?

Action plugins get run on the master instead of on the target. For modules like file/copy/template, some of the work
needs to be done on the master before the module executes on the target. Action plugins execute first on the master
and can then execute the normal module on the target if necessary.

1.7. Developer Information 253

http://docs.ansible.com/ansible/intro_configuration.html#library
https://github.com/ansible/ansible/labels/module

Ansible 2.2 Documentation, 2.4

For more information about action plugins, go here.

3. Should you use a role instead?

Check out the roles documentation.

How To Develop A Module

The following topics will discuss how to develop and work with modules:

Building A Simple Module A general overview of how to develop, debug, and test modules.

Documenting Your Module How to include in-line documentation in your module.

Conventions, Best Practices, and Pitfalls Best practices, recommendations, and things to avoid.

Contributing Your Module to Ansible Checklist for contributing your module to Ansible.

Testing Ansible Developing unit and integration tests.

Ansible and Python 3 Adding Python 3 support to modules (all new modules must be Python-2.6 and Python-3.5
compatible).

Information for submitting a group of modules A guide for partners wanting to submit multiple modules.

:

About Modules Learn about available modules

Developing Plugins Learn about developing plugins

Python API Learn about the Python API for playbook and task execution

GitHub modules directory Browse module source code

Mailing List Development mailing list

irc.freenode.net #ansible IRC chat channel

Appendix: Module Utilities

Ansible provides a number of module utilities that provide helper functions that you can use when developing your
own modules. The basic.py module utility provides the main entry point for accessing the Ansible library, and all
Ansible modules must, at minimum, import from basic.py:

from ansible.module_utils.basic import *

The following is a list of module_utils files and a general description. The module utility source code lives in the
./lib/module_utils directory under your main Ansible path - for more details on any specific module utility, please see
the source code.

• a10.py - Utilities used by the a10_server module to manage A10 Networks devices.

• api.py - Adds shared support for generic API modules.

• aos.py - Module support utilities for managing Apstra AOS Server.

• asa.py - Module support utilities for managing Cisco ASA network devices.

• azure_rm_common.py - Definitions and utilities for Microsoft Azure Resource Manager template deployments.

• basic.py - General definitions and helper utilities for Ansible modules.

• cloudstack.py - Utilities for CloudStack modules.

254 Chapter 1. About Ansible

https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
http://docs.ansible.com/ansible/playbooks_roles.html#roles
https://github.com/ansible/ansible/tree/devel/lib/ansible/modules
http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

• database.py - Miscellaneous helper functions for PostGRES and MySQL

• docker_common.py - Definitions and helper utilities for modules working with Docker.

• ec2.py - Definitions and utilities for modules working with Amazon EC2

• eos.py - Helper functions for modules working with EOS networking devices.

• f5.py - Helper functions for modules working with F5 networking devices.

• facts.py - Helper functions for modules that return facts.

• gce.py - Definitions and helper functions for modules that work with Google Compute Engine resources.

• ios.py - Definitions and helper functions for modules that manage Cisco IOS networking devices

• iosxr.py - Definitions and helper functions for modules that manage Cisco IOS-XR networking devices

• ismount.py - Contains single helper function that fixes os.path.ismount

• junos.py - Definitions and helper functions for modules that manage Junos networking devices

• known_hosts.py - utilities for working with known_hosts file

• mysql.py - Allows modules to connect to a MySQL instance

• netapp.py - Functions and utilities for modules that work with the NetApp storage platforms.

• netcfg.py - Configuration utility functions for use by networking modules

• netcmd.py - Defines commands and comparison operators for use in networking modules

• network.py - Functions for running commands on networking devices

• nxos.py - Contains definitions and helper functions specific to Cisco NXOS networking devices

• openstack.py - Utilities for modules that work with Openstack instances.

• openswitch.py - Definitions and helper functions for modules that manage OpenSwitch devices

• powershell.ps1 - Utilities for working with Microsoft Windows clients

• pycompat24.py - Exception workaround for Python 2.4.

• rax.py - Definitions and helper functions for modules that work with Rackspace resources.

• redhat.py - Functions for modules that manage Red Hat Network registration and subscriptions

• service.py - Contains utilities to enable modules to work with Linux services (placeholder, not in use).

• shell.py - Functions to allow modules to create shells and work with shell commands

• six/__init__.py - Bundled copy of the Six Python library to aid in writing code compatible with both Python 2
and Python 3.

• splitter.py - String splitting and manipulation utilities for working with Jinja2 templates

• urls.py - Utilities for working with http and https requests

• vca.py - Contains utilities for modules that work with VMware vCloud Air

• vmware.py - Contains utilities for modules that work with VMware vSphere VMs

• vyos.py - Definitions and functions for working with VyOS networking

1.7. Developer Information 255

https://pythonhosted.org/six/

Ansible 2.2 Documentation, 2.4

Building A Simple Module

Let’s build a very basic module to get and set the system time. For starters, let’s build a module that just outputs the
current time.

We are going to use Python here but any language is possible. Only File I/O and outputting to standard out are required.
So, bash, C++, clojure, Python, Ruby, whatever you want is fine.

Now Python Ansible modules contain some extremely powerful shortcuts (that all the core modules use) but first we
are going to build a module the very hard way. The reason we do this is because modules written in any language
OTHER than Python are going to have to do exactly this. We’ll show the easy way later.

So, here’s an example. You would never really need to build a module to set the system time, the ‘command’ module
could already be used to do this.

Reading the modules that come with Ansible (linked above) is a great way to learn how to write modules. Keep
in mind, though, that some modules in Ansible’s source tree are internalisms, so look at service or yum, and don’t
stare too close into things like async_wrapper or you’ll turn to stone. Nobody ever executes async_wrapper
directly.

Ok, let’s get going with an example. We’re going to use Python. For starters, save this as a file named timetest.py

#!/usr/bin/python

import datetime
import json

date = str(datetime.datetime.now())
print(json.dumps({

"time" : date
}))

Testing Your Module

There’s a useful test script in the source checkout for Ansible:

git clone git://github.com/ansible/ansible.git
source ansible/hacking/env-setup

For instructions on setting up Ansible from source, please see Installation.

Let’s run the script you just wrote with that:

ansible/hacking/test-module -m ./timetest.py

You should see output that looks something like this:

{"time": "2012-03-14 22:13:48.539183"}

If you did not, you might have a typo in your module, so recheck it and try again.

Reading Input

Let’s modify the module to allow setting the current time. We’ll do this by seeing if a key value pair in the form
time=<string> is passed into the module.

Ansible internally saves arguments to an arguments file. So we must read the file and parse it. The arguments file is
just a string, so any form of arguments are legal. Here we’ll do some basic parsing to treat the input as key=value.

256 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

The example usage we are trying to achieve to set the time is:

time time="March 14 22:10"

If no time parameter is set, we’ll just leave the time as is and return the current time.

: This is obviously an unrealistic idea for a module. You’d most likely just use the command module. However, it
makes for a decent tutorial.

Let’s look at the code. Read the comments as we’ll explain as we go. Note that this is highly verbose because it’s
intended as an educational example. You can write modules a lot shorter than this:

#!/usr/bin/python

import some python modules that we'll use. These are all
available in Python's core

import datetime
import sys
import json
import os
import shlex

read the argument string from the arguments file
args_file = sys.argv[1]
args_data = file(args_file).read()

For this module, we're going to do key=value style arguments.
Modules can choose to receive json instead by adding the string:
WANT_JSON
Somewhere in the file.
Modules can also take free-form arguments instead of key-value or json
but this is not recommended.

arguments = shlex.split(args_data)
for arg in arguments:

ignore any arguments without an equals in it
if "=" in arg:

(key, value) = arg.split("=")

if setting the time, the key 'time'
will contain the value we want to set the time to

if key == "time":

now we'll affect the change. Many modules
will strive to be idempotent, generally
by not performing any actions if the current
state is the same as the desired state.
See 'service' or 'yum' in the main git tree
for an illustrative example.

rc = os.system("date -s \"%s\"" % value)

always handle all possible errors

1.7. Developer Information 257

Ansible 2.2 Documentation, 2.4

#
when returning a failure, include 'failed'
in the return data, and explain the failure
in 'msg'. Both of these conventions are
required however additional keys and values
can be added.

if rc != 0:
print(json.dumps({

"failed" : True,
"msg" : "failed setting the time"

}))
sys.exit(1)

when things do not fail, we do not
have any restrictions on what kinds of
data are returned, but it's always a
good idea to include whether or not
a change was made, as that will allow
notifiers to be used in playbooks.

date = str(datetime.datetime.now())
print(json.dumps({

"time" : date,
"changed" : True

}))
sys.exit(0)

if no parameters are sent, the module may or
may not error out, this one will just
return the time

date = str(datetime.datetime.now())
print(json.dumps({

"time" : date
}))

Let’s test that module:

ansible/hacking/test-module -m ./timetest.py -a "time=\"March 14 12:23\""

This should return something like:

{"changed": true, "time": "2012-03-14 12:23:00.000307"}

Binary Modules Input

Support for binary modules was added in Ansible 2.2. When Ansible detects a binary module, it will proceed to supply
the argument input as a file on argv[1] that is formatted as JSON. The JSON contents of that file would resemble
something similar to the following payload for a module accepting the same arguments as the ping module:

{
"data": "pong",
"_ansible_verbosity": 4,
"_ansible_diff": false,
"_ansible_debug": false,

258 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

"_ansible_check_mode": false,
"_ansible_no_log": false

}

Module Provided ‘Facts’

The setup module that ships with Ansible provides many variables about a system that can be used in playbooks and
templates. However, it’s possible to also add your own facts without modifying the system module. To do this, just
have the module return a ansible_facts key, like so, along with other return data:

{
"changed" : true,
"rc" : 5,
"ansible_facts" : {

"leptons" : 5000,
"colors" : {

"red" : "FF0000",
"white" : "FFFFFF"

}
}

}

These ‘facts’ will be available to all statements called after that module (but not before) in the playbook. A good idea
might be to make a module called ‘site_facts’ and always call it at the top of each playbook, though we’re always open
to improving the selection of core facts in Ansible as well.

Returning a new fact from a python module could be done like:

module.exit_json(msg=message, ansible_facts=dict(leptons=5000, colors=my_colors))

Common Module Boilerplate

As mentioned, if you are writing a module in Python, there are some very powerful shortcuts you can use. Modules
are still transferred as one file, but an arguments file is no longer needed, so these are not only shorter in terms of code,
they are actually FASTER in terms of execution time.

Rather than mention these here, the best way to learn is to read some of the source of the modules that come with
Ansible.

The ‘group’ and ‘user’ modules are reasonably non-trivial and showcase what this looks like.

Key parts include always importing the boilerplate code from ansible.module_utils.basic like this:

from ansible.module_utils.basic import AnsibleModule
if __name__ == '__main__':

main()

: Prior to Ansible-2.1.0, importing only what you used from ansible.module_utils.basic did not work.
You needed to use a wildcard import like this:

from ansible.module_utils.basic import *

And instantiating the module class like:

1.7. Developer Information 259

https://github.com/ansible/ansible/tree/devel/lib/ansible/modules

Ansible 2.2 Documentation, 2.4

def main():
module = AnsibleModule(

argument_spec = dict(
state = dict(default='present', choices=['present', 'absent']),
name = dict(required=True),
enabled = dict(required=True, type='bool'),
something = dict(aliases=['whatever'])

)
)

The AnsibleModule provides lots of common code for handling returns, parses your arguments for you, and allows
you to check inputs.

Successful returns are made like this:

module.exit_json(changed=True, something_else=12345)

And failures are just as simple (where msg is a required parameter to explain the error):

module.fail_json(msg="Something fatal happened")

There are also other useful functions in the module class, such as module.sha1(path)(). See lib/ansible/
module_utils/basic.py in the source checkout for implementation details.

Again, modules developed this way are best tested with the hacking/test-module script in the git source check-
out. Because of the magic involved, this is really the only way the scripts can function outside of Ansible.

If submitting a module to Ansible’s core code, which we encourage, use of AnsibleModule is required.

Supporting Check Mode

1.1 .

Modules may optionally support check mode. If the user runs Ansible in check mode, a module should try to predict
and report whether changes will occur but not actually make any changes (modules that do not support check mode
will also take no action, but just will not report what changes they might have made).

For your module to support check mode, you must pass supports_check_mode=True when instantiating the
AnsibleModule object. The AnsibleModule.check_mode attribute will evaluate to True when check mode is enabled.
For example:

module = AnsibleModule(
argument_spec = dict(...),
supports_check_mode=True

)

if module.check_mode:
Check if any changes would be made but don't actually make those changes
module.exit_json(changed=check_if_system_state_would_be_changed())

Remember that, as module developer, you are responsible for ensuring that no system state is altered when the user
enables check mode.

If your module does not support check mode, when the user runs Ansible in check mode, your module will simply be
skipped.

260 Chapter 1. About Ansible

http://docs.ansible.com/ansible/playbooks_checkmode.html

Ansible 2.2 Documentation, 2.4

Documenting Your Module

Topics

• Documenting Your Module

– ANSIBLE_METADATA Block

* Version 1.0 of the metadata

· Structure

· Fields

– DOCUMENTATION Block

– EXAMPLES block

– RETURN Block

– Python Imports

– Formatting options

– Documentation fragments

– Testing documentation

The online module documentation is generated from the modules themselves. As the module documentation is
generated from documentation strings contained in the modules, all modules included with Ansible must have a
DOCUMENTATION string. This string must be a valid YAML document which conforms to the schema defined below.
You may find it easier to start writing your DOCUMENTATION string in an editor with YAML syntax highlighting
before you include it in your Python file.

All modules must have the following sections defined in this order:

1. ANSIBLE_METADATA

2. DOCUMENTATION

3. EXAMPLES

4. RETURNS

5. Python imports

: Why don’t the imports go first?

Keen Python programmers may notice that contrary to PEP8’s advice we don’t put imports at the top of the file.
This is because the ANSIBLE_METADATA through RETURNS sections are not used by the module code itself; they
are essentially extra docstrings for the file. The imports are placed after these special variables for the same reason as
PEP8 puts the imports after the introductory comments and docstrings. This keeps the active parts of the code together
and the pieces which are purely informational apart. The decision to exclude E402 is based on readability (which
is what PEP8 is about). Documentation strings in a module are much more similar to module level docstrings, than
code, and are never utilized by the module itself. Placing the imports below this documentation and closer to the code,
consolidates and groups all related code in a congruent manner to improve readability, debugging and understanding.

: Why do some modules have imports at the bottom of the file?

1.7. Developer Information 261

Ansible 2.2 Documentation, 2.4

If you look at some existing older modules, you may find imports at the bottom of the file. Do not copy that idiom
into new modules as it is a historical oddity due to how modules used to be combined with libraries. Over time
we’re moving the imports to be in their proper place.

ANSIBLE_METADATA Block

ANSIBLE_METADATA contains information about the module for use by other tools. At the moment, it informs other
tools which type of maintainer the module has and to what degree users can rely on a module’s behaviour remaining
the same over time.

For new modules, the following block can be simply added into your module

ANSIBLE_METADATA = {'metadata_version': '1.0',
'status': ['preview'],
'supported_by': 'community'}

:

• metadata_version is the version of the ANSIBLE_METADATA schema, not the version of the module.

• Promoting a module’s status or supported_by status should only be done by members of the Ansible
Core Team.

: Pre-released metdata version

During development of Ansible-2.3, modules had an initial version of the metadata. This version was modified
slightly after release to fix some points of confusion. You may occassionally see PRs for modules where the AN-
SIBLE_METADATA doesn’t look quite right because of this. Module metadata should be fixed before checking it
into the repository.

Version 1.0 of the metadata

Structure

ANSIBLE_METADATA = {
'metadata_version': '1.0',
'supported_by': 'community',
'status': ['preview', 'deprecated']

}

Fields

metadata_version An “X.Y” formatted string. X and Y are integers which define the metadata format
version. Modules shipped with Ansible are tied to an Ansible release, so we will only ship with a
single version of the metadata. We’ll increment Y if we add fields or legal values to an existing field.
We’ll increment X if we remove fields or values or change the type or meaning of a field.

supported_by This field records who supports the module. Default value is community. Values are:

262 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

core

curated

community

For information on what the support level values entail, please see Modules Support.

status This field records information about the module that is important to the end user. It’s a list of
strings. The default value is a single element list [“preview”]. The following strings are valid
statuses and have the following meanings:

stableinterface This means that the module’s parameters are stable. Every effort will be
made not to remove parameters or change their meaning. It is not a rating of the
module’s code quality.

preview This module is a tech preview. This means it may be unstable, the parameters
may change, or it may require libraries or web services that are themselves subject to
incompatible changes.

deprecated This module is deprecated and will no longer be available in a future release.

removed This module is not present in the release. A stub is kept so that documentation
can be built. The documentation helps users port from the removed module to new
modules.

DOCUMENTATION Block

See an example documentation string in the checkout under examples/DOCUMENTATION.yml.

Include it in your module file like this:

#!/usr/bin/python
Copyright header....

DOCUMENTATION = '''

module: modulename
short_description: This is a sentence describing the module
... snip ...
'''

The following fields can be used and are all required unless specified otherwise:

module The name of the module. This must be the same as the filename, without the .py extension.

short_description

• A short description which is displayed on the ../list_of_all_modules page and ansible-doc
-l.

• As the short description is displayed by ansible-doc -l without the category grouping
it needs enough detail to explain its purpose without the context of the directory structure in
which it lives.

• Unlike description: this field should not have a trailing full stop.

description

• A detailed description (generally two or more sentences).

• Must be written in full sentences, i.e. with capital letters and fullstops.

1.7. Developer Information 263

http://docs.ansible.com/ansible/modules_support.html
https://github.com/ansible/ansible/blob/devel/examples/DOCUMENTATION.yml

Ansible 2.2 Documentation, 2.4

• Shouldn’t mention the name module.

version_added The version of Ansible when the module was added. This is a string, and not a float, i.e.
version_added: "2.1"

author Name of the module author in the form First Last (@GitHubID). Use a multi-line list if
there is more than one author.

deprecated If this module is deprecated, detail when that happened, and what to use instead, e.g. Dep-
recated in 2.3. Use M(whatmoduletouseinstead) instead. Ensure CHANGELOG.md is updated to
reflect this.

options One per module argument:

option-name

• Declarative operation (not CRUD)–this makes it easy for a user not to care what the
existing state is, just about the final state, for example online:, rather than is_online:.

• The name of the option should be consistent with the rest of the module, as well as
other modules in the same category.

description

• Detailed explanation of what this option does. It should be written in full sentences.

• Should not list the options values (that’s what choices: is for, though it should
explain what the values do if they aren’t obvious.

• If an optional parameter is sometimes required this need to be reflected in the docu-
mentation, e.g. “Required when I(state=present).”

• Mutually exclusive options must be documented as the final sentence on each of the
options.

required Only needed if true, otherwise it is assumed to be false.

default

• If required is false/missing, default may be specified (assumed ‘null’ if missing).

• Ensure that the default parameter in the docs matches the default parameter in the
code.

• The default option must not be listed as part of the description.

choices List of option values. Should be absent if empty.

type If an argument is type='bool', this field should be set to type: bool and no
choices should be specified.

aliases List of option name aliases; generally not needed.

version_added Only needed if this option was extended after initial Ansible release, i.e.
this is greater than the top level version_added field. This is a string, and not a float,
i.e. version_added: "2.3".

suboptions If this option takes a dict, you can define it here. See azure_rm_securitygroup,
os_ironic_node for examples.

requirements List of requirements, and minimum versions (if applicable)

notes Details of any important information that doesn’t fit in one of the above sections; for example if
check_mode isn’t supported, or a link to external documentation.

264 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

:

• The above fields are are all in lowercase.

• If the module doesn’t doesn’t have any options (for example, it’s a _facts module), you can use options:
{}.

EXAMPLES block

The EXAMPLES section is required for all new modules.

Examples should demonstrate real world usage, and be written in multi-line plain-text YAML format.

Ensure that examples are kept in sync with the options during the PR review and any following code refactor.

As per playbook best practice, a name: should be specified.

EXAMPLES string within the module like this:

EXAMPLES = '''
- name: Ensure foo is installed

modulename:
name: foo
state: present

'''

If the module returns facts that are often needed, an example of how to use them can be helpful.

RETURN Block

The RETURN section documents what the module returns, and is required for all new modules.

For each value returned, provide a description, in what circumstances the value is returned, the type of the
value and a sample. For example, from the copy module:

The following fields can be used and are all required unless specified otherwise.

return name Name of the returned field.

description Detailed description of what this value represents.

returned When this value is returned, such as always, on success, always

type Data type

sample One or more examples.

contains Optional, if you set type: complex you can detail the dictionary here by repeating
the above elements.

return name One per return

description Detailed description of what this value represents.

returned When this value is returned, such as always, on success, always

type Data type

sample One or more examples.

1.7. Developer Information 265

Ansible 2.2 Documentation, 2.4

For complex nested returns type can be specified as type: complex.

Example:

RETURN = '''
dest:

description: destination file/path
returned: success
type: string
sample: /path/to/file.txt

src:
description: source file used for the copy on the target machine
returned: changed
type: string
sample: /home/httpd/.ansible/tmp/ansible-tmp-1423796390.97-147729857856000/source

md5sum:
description: md5 checksum of the file after running copy
returned: when supported
type: string
sample: 2a5aeecc61dc98c4d780b14b330e3282

...

: If your module doesn’t return anything (apart from the standard returns), you can use RETURN = ''' # '''.

Python Imports

Starting with Ansible version 2.2, all new modules are required to use imports in the form:

from module_utils.basic import AnsibleModule

: The use of “wildcard” imports such as from module_utils.basic import * is no longer allowed.

Formatting options

These formatting functions are U() for URLs, I() for option names, C() for files and option values and M() for
module names. Module names should be specified as M(module) to create a link to the online documentation for
that module.

Example usage:

Or if not set the environment variable C(ACME_PASSWORD) will be used.
...
Required if I(state=present)
...
Mutually exclusive with I(project_src) and I(files).
...
See also M(win_copy) or M(win_template).
...
See U(https://www.ansible.com/tower) for an overview.

266 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

: If you wish to refer a collection of modules, use C(..), e.g. Refer to the C(win_*) modules.

Documentation fragments

Some categories of modules share common documentation, such as details on how to authenticate options, or file
mode settings. Rather than duplicate that information it can be shared using docs_fragments.

These shared fragments are similar to the standard documentation block used in a module, they are just contained in a
ModuleDocFragment class.

All the existing docs_fragments can be found in lib/ansible/utils/module_docs_fragments/.

To include, simply add in extends_documentation_fragment: FRAGMENT_NAME into your module.

Examples can be found by searching for extends_documentation_fragment under the Ansible source tree.

Testing documentation

Put your completed module file into the lib/ansible/modules/$CATEGORY/ directory and then run the com-
mand: make webdocs. The new ‘modules.html’ file will be built in the docs/docsite/_build/html/
$MODULENAME_module.html directory.

To test your documentation against your argument_spec you can use validate-modules. Note that this
option isn’t currently enabled in Shippable due to the time it takes to run.

If you don't already, ensure you are using your local checkout
source hacking/env-setup
./test/sanity/validate-modules/validate-modules --arg-spec --warnings lib/ansible/
→˓modules/your/modules/

: If you’re having a problem with the syntax of your YAML you can validate it on the YAML Lint website.

For more information in testing, including how to add unit and integration tests, see Testing Ansible.

Conventions, Best Practices, and Pitfalls

As a reminder from the example code above, here are some basic conventions and guidelines:

• If the module is addressing an object, the parameter for that object should be called ‘name’ whenever possible,
or accept ‘name’ as an alias.

• If you have a company module that returns facts specific to your installations, a good name for this module is
site_facts.

• Modules accepting boolean status should generally accept ‘yes’, ‘no’, ‘true’, ‘false’, or anything else a user may
likely throw at them. The AnsibleModule common code supports this with “type=’bool”’.

• Include a minimum of dependencies if possible. If there are dependencies, document them at the top of the
module file, and have the module raise JSON error messages when the import fails.

• Modules must be self-contained in one file to be auto-transferred by ansible.

• If packaging modules in an RPM, they only need to be installed on the control machine and should be dropped
into /usr/share/ansible. This is entirely optional and up to you.

1.7. Developer Information 267

http://www.yamllint.com/

Ansible 2.2 Documentation, 2.4

• Modules must output valid JSON only. The top level return type must be a hash (dictionary) although they
can be nested. Lists or simple scalar values are not supported, though they can be trivially contained inside a
dictionary.

• In the event of failure, a key of ‘failed’ should be included, along with a string explanation in ‘msg’. Mod-
ules that raise tracebacks (stacktraces) are generally considered ‘poor’ modules, though Ansible can deal with
these returns and will automatically convert anything unparseable into a failed result. If you are using the An-
sibleModule common Python code, the ‘failed’ element will be included for you automatically when you call
‘fail_json’.

• Return codes from modules are actually not significant, but continue on with 0=success and non-zero=failure
for reasons of future proofing.

• As results from many hosts will be aggregated at once, modules should return only relevant output. Returning
the entire contents of a log file is generally bad form.

Debugging AnsibleModule-based modules

: If you’re using the hacking/test-module script then most of this is taken care of for you. If you need to do
some debugging of the module on the remote machine that the module will actually run on or when the module is used
in a playbook then you may need to use this information instead of relying on test-module.

Starting with Ansible-2.1.0, AnsibleModule-based modules are put together as a zip file consisting of the module
file and the various python module boilerplate inside of a wrapper script instead of as a single file with all of the
code concatenated together. Without some help, this can be harder to debug as the file needs to be extracted from
the wrapper in order to see what’s actually going on in the module. Luckily the wrapper script provides some helper
methods to do just that.

If you are using Ansible with the ANSIBLE_KEEP_REMOTE_FILES environment variables to keep the remote
module file, here’s a sample of how your debugging session will start:

$ ANSIBLE_KEEP_REMOTE_FILES=1 ansible localhost -m ping -a 'data=debugging_session' -
→˓vvv
<127.0.0.1> ESTABLISH LOCAL CONNECTION FOR USER: badger
<127.0.0.1> EXEC /bin/sh -c '(umask 77 && mkdir -p "` echo $HOME/.ansible/tmp/
→˓ansible-tmp-1461434734.35-235318071810595 `" && echo "` echo $HOME/.ansible/tmp/
→˓ansible-tmp-1461434734.35-235318071810595 `")'
<127.0.0.1> PUT /var/tmp/tmpjdbJ1w TO /home/badger/.ansible/tmp/ansible-tmp-
→˓1461434734.35-235318071810595/ping
<127.0.0.1> EXEC /bin/sh -c 'LANG=en_US.UTF-8 LC_ALL=en_US.UTF-8 LC_MESSAGES=en_US.
→˓UTF-8 /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1461434734.35-
→˓235318071810595/ping'
localhost | SUCCESS => {

"changed": false,
"invocation": {

"module_args": {
"data": "debugging_session"

},
"module_name": "ping"

},
"ping": "debugging_session"

}

Setting ANSIBLE_KEEP_REMOTE_FILES to 1 tells Ansible to keep the remote module files instead of deleting
them after the module finishes executing. Giving Ansible the -vvv option makes Ansible more verbose. That way it
prints the file name of the temporary module file for you to see.

268 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

If you want to examine the wrapper file you can. It will show a small python script with a large, base64 encoded string.
The string contains the module that is going to be executed. Run the wrapper’s explode command to turn the string
into some python files that you can work with:

$ python /home/badger/.ansible/tmp/ansible-tmp-1461434734.35-235318071810595/ping
→˓explode
Module expanded into:
/home/badger/.ansible/tmp/ansible-tmp-1461434734.35-235318071810595/debug_dir

When you look into the debug_dir you’ll see a directory structure like this:

- ansible_module_ping.py
- args
- ansible

- __init__.py
- module_utils

- basic.py
- __init__.py

• ansible_module_ping.py is the code for the module itself. The name is based on the name of the module
with a prefix so that we don’t clash with any other python module names. You can modify this code to see what
effect it would have on your module.

• The args file contains a JSON string. The string is a dictionary containing the module arguments and other
variables that Ansible passes into the module to change its behaviour. If you want to modify the parameters that
are passed to the module, this is the file to do it in.

• The ansible directory contains code from ansible.module_utils that is used by the module. Ansible
includes files for any :module:‘ansible.module_utils imports in the module but not any files from any other
module. So if your module uses ansible.module_utils.url Ansible will include it for you, but if your
module includes requests then you’ll have to make sure that the python requests library is installed on the
system before running the module. You can modify files in this directory if you suspect that the module is having
a problem in some of this boilerplate code rather than in the module code you have written.

Once you edit the code or arguments in the exploded tree you need some way to run it. There’s a separate wrapper
subcommand for this:

$ python /home/badger/.ansible/tmp/ansible-tmp-1461434734.35-235318071810595/ping
→˓execute
{"invocation": {"module_args": {"data": "debugging_session"}}, "changed": false, "ping
→˓": "debugging_session"}

This subcommand takes care of setting the PYTHONPATH to use the exploded debug_dir/ansible/
module_utils directory and invoking the script using the arguments in the args file. You can continue to run
it like this until you understand the problem. Then you can copy it back into your real module file and test that the real
module works via ansible or ansible-playbook.

: The wrapper provides one more subcommand, excommunicate. This subcommand is very similar to execute
in that it invokes the exploded module on the arguments in the args. The way it does this is different, however.
excommunicate imports the main() function from the module and then calls that. This makes excommunicate
execute the module in the wrapper’s process. This may be useful for running the module under some graphical
debuggers but it is very different from the way the module is executed by Ansible itself. Some modules may not work
with excommunicate or may behave differently than when used with Ansible normally. Those are not bugs in the
module; they’re limitations of excommunicate. Use at your own risk.

1.7. Developer Information 269

Ansible 2.2 Documentation, 2.4

Module Paths

If you are having trouble getting your module “found” by ansible, be sure it is in the ANSIBLE_LIBRARY environ-
ment variable.

If you have a fork of one of the ansible module projects, do something like this:

ANSIBLE_LIBRARY=~/ansible-modules-core

And this will make the items in your fork be loaded ahead of what ships with Ansible. Just be sure to make sure you’re
not reporting bugs on versions from your fork!

To be safe, if you’re working on a variant on something in Ansible’s normal distribution, it’s not a bad idea to give it a
new name while you are working on it, to be sure you know you’re pulling your version.

Common Pitfalls

You should never do this in a module:

print("some status message")

Because the output is supposed to be valid JSON.

Modules must not output anything on standard error, because the system will merge standard out with standard error
and prevent the JSON from parsing. Capturing standard error and returning it as a variable in the JSON on standard
out is fine, and is, in fact, how the command module is implemented.

If a module returns stderr or otherwise fails to produce valid JSON, the actual output will still be shown in Ansible,
but the command will not succeed.

Don’t write to files directly; use a temporary file and then use the atomic_move function from ansi-
ble.module_utils.basic to move the updated temporary file into place. This prevents data corruption and ensures that
the correct context for the file is kept.

Avoid creating a module that does the work of other modules; this leads to code duplication and divergence, and makes
things less uniform, unpredictable and harder to maintain. Modules should be the building blocks. Instead of creating
a module that does the work of other modules, use Plays and Roles instead.

Avoid creating ‘caches’. Ansible is designed without a central server or authority, so you cannot guarantee it will not
run with different permissions, options or locations. If you need a central authority, have it on top of Ansible (for
example, using bastion/cm/ci server or tower); do not try to build it into modules.

Always use the hacking/test-module script when developing modules and it will warn you about these kind of things.

Contributing Your Module to Ansible

High-quality modules with minimal dependencies can be included in Ansible, but modules (just due to the program-
ming preferences of the developers) will need to be implemented in Python and use the AnsibleModule common code,
and should generally use consistent arguments with the rest of the program. Stop by the mailing list to inquire about
requirements if you like, and submit a github pull request to the ansible project. Included modules will ship with
ansible, and also have a chance to be promoted to ‘core’ status, which gives them slightly higher development priority
(though they’ll work in exactly the same way).

270 Chapter 1. About Ansible

https://github.com/ansible/ansible

Ansible 2.2 Documentation, 2.4

Contributing Modules Checklist

The following checklist items are important guidelines for people who want to contribute to the development of
modules to Ansible on GitHub. Please read the guidelines before you submit your PR/proposal.

• The shebang must always be #!/usr/bin/python. This allows ansible_python_interpreter to
work

• Modules must be written to support Python 2.6. If this is not possible, required minimum Python version and
rationale should be explained in the requirements section in DOCUMENTATION. In Ansible-2.3 the minimum
requirement for modules was Python-2.4.

• Modules must be written to use proper Python-3 syntax. At some point in the future we’ll come up with rules
for running on Python-3 but we’re not there yet. See Ansible and Python 3 for help on how to do this.

• Modules must have a metadata section. For the vast majority of new modules, the metadata should look exactly
like this:

ANSIBLE_METADATA = {'status': ['preview'],
'supported_by': 'community',
'metadata_version': '1.0'}

The complete module metadata specification is here: Ansible metadata block

• Documentation: Make sure it exists

– Module documentation should briefly and accurately define what each module and option does,
and how it works with others in the underlying system. Documentation should be written for broad
audience–readable both by experts and non-experts. This documentation is not meant to teach a
total novice, but it also should not be reserved for the Illuminati (hard balance).

– Descriptions should always start with a capital letter and end with a full stop. Consistency always
helps.

– The required setting is only required when true, otherwise it is assumed to be false.

– If required is false/missing, default may be specified (assumed ‘null’ if missing). Ensure that the
default parameter in docs matches default parameter in code.

– Documenting default is not needed for required: true.

– Remove unnecessary doc like aliases: [] or choices: [].

– Do not use Boolean values in a choice list . For example, in the list choices: [’no’, ‘verify’, ‘always],
‘no’ will be interpreted as a Boolean value (you can check basic.py for BOOLEANS_* constants
to see the full list of Boolean keywords). If your option actually is a boolean, just use type=bool;
there is no need to populate ‘choices’.

– For new modules or options in a module add version_added. The version should match the value of
the current development version and is a string (not a float), so be sure to enclose it in quotes.

– Verify that arguments in doc and module spec dict are identical.

– For password / secret arguments no_log=True should be set.

– Requirements should be documented, using the requirements=[] field.

– Author should be set, with their name and their github id, at the least.

– Ensure that you make use of U() for URLs, I() for option names, C() for files and option values,
M() for module names.

– If an optional parameter is sometimes required this need to be reflected in the documentation, e.g.
“Required when C(state=present).”

1.7. Developer Information 271

https://docs.ansible.com/ansible/dev_guide/developing_modules_documenting.html#ansible-metadata-block

Ansible 2.2 Documentation, 2.4

– Verify that a GPL 3 License header is included.

– Does module use check_mode? Could it be modified to use it? Document it. Documentation is
everyone’s friend.

– Examples–include them whenever possible and make sure they are reproducible.

– Document the return structure of the module. Refer to Common and Documenting Your Module for
additional information.

• Predictable user interface: This is a particularly important section as it is also an area where we need significant improvements.

– Name consistency across modules (we’ve gotten better at this, but we still have many deviations).

– Declarative operation (not CRUD)–this makes it easy for a user not to care what the existing state
is, just about the final state. started/stopped, present/absent–don’t overload options
too much. It is preferable to add a new, simple option than to add choices/states that don’t fit with
existing ones.

– Keep options small, having them take large data structures might save us a few tasks, but adds a
complex requirement that we cannot easily validate before passing on to the module.

– Allow an “expert mode”. This may sound like the absolute opposite of the previous one, but it is al-
ways best to let expert users deal with complex data. This requires different modules in some cases,
so that you end up having one (1) expert module and several ‘piecemeal’ ones (ec2_vpc_net?). The
reason for this is not, as many users express, because it allows a single task and keeps plays small
(which just moves the data complexity into vars files, leaving you with a slightly different structure
in another YAML file). It does, however, allow for a more ‘atomic’ operation against the underlying
APIs and services.

• Informative responses: Please note, that for >= 2.0, it is required that return data to be documented.

– Always return useful data, even when there is no change.

– Be consistent about returns (some modules are too random), unless it is detrimental to the
state/action.

– Make returns reusable–most of the time you don’t want to read it, but you do want to process it and
re-purpose it.

– Return diff if in diff mode. This is not required for all modules, as it won’t make sense for certain
ones, but please attempt to include this when applicable).

• Code: This applies to all code in general, but often seems to be missing from modules, so please keep the following in mind as you work.

– Validate upfront–fail fast and return useful and clear error messages.

– Defensive programming–modules should be designed simply enough that this should be easy. Mod-
ules should always handle errors gracefully and avoid direct stacktraces. Ansible deals with this
better in 2.0 and returns them in the results.

– Fail predictably–if we must fail, do it in a way that is the most expected. Either mimic the underly-
ing tool or the general way the system works.

– Modules should not do the job of other modules, that is what roles are for. Less magic is more.

– Don’t reinvent the wheel. Part of the problem is that code sharing is not that easy nor documented,
we also need to expand our base functions to provide common patterns (retry, throttling, etc).

– Support check mode. This is not required for all modules, as it won’t make sense for certain ones,
but please attempt to include this when applicable). For more information, refer to Check Mode As
A Drift Test and Check Mode (“Dry Run”).

272 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

• Exceptions: The module must handle them. (exceptions are bugs)

– Give out useful messages on what you were doing and you can add the exception message to that.

– Avoid catchall exceptions, they are not very useful unless the underlying API gives very good error
messages pertaining the attempted action.

• Module-dependent guidelines: Additional module guidelines may exist for certain families of modules.

– Be sure to check out the modules themselves for additional information.

* Amazon

– Modules should make use of the “extends_documentation_fragment” to ensure documentation
available. For example, the AWS module should include:

extends_documentation_fragment:
- aws
- ec2

• The module must not use sys.exit() –> use fail_json() from the module object.

• Import custom packages in try/except and handled with fail_json() in main() e.g.

try:
import foo
HAS_LIB=True

except:
HAS_LIB=False

• The return structure should be consistent, even if NA/None are used for keys normally returned under other
options.

• Are module actions idempotent? If not document in the descriptions or the notes.

• Import ansible.module_utils code in the same place as you import other libraries. In older code, this
was done at the bottom of the file but that’s no longer needed.

• Do not use wildcards for importing other python modules (ex: from ansible.module_utils.basic
import *). This used to be required for code imported from ansible.module_utils but, from Ansible-
2.1 onwards, it’s just an outdated and bad practice.

• The module must have a main function that wraps the normal execution.

• Call your main() from a conditional so that it would be possible to import them into unittests in the future
example

if __name__ == '__main__':
main()

• Try to normalize parameters with other modules, you can have aliases for when user is more familiar with
underlying API name for the option

• Being pep8 compliant is nice, but not a requirement. Specifically, the 80 column limit now hinders readability
more that it improves it

• Avoid ‘action/command‘, they are imperative and not declarative, there are other ways to express the same thing

• Do not add list or info state options to an existing module - create a new _facts module.

• If you are asking ‘how can I have a module execute other modules’ ... you want to write a role

1.7. Developer Information 273

https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/cloud/amazon/GUIDELINES.md

Ansible 2.2 Documentation, 2.4

• Return values must be able to be serialized as json via the python stdlib json library. basic python types (strings,
int, dicts, lists, etc) are serializable. A common pitfall is to try returning an object via exit_json(). Instead,
convert the fields you need from the object into the fields of a dictionary and return the dictionary.

• When fetching URLs, please use either fetch_url or open_url from ansible.module_utils.urls rather than urllib2;
urllib2 does not natively verify TLS certificates and so is insecure for https.

• facts modules must return facts in the ansible_facts field of the result dictionary. Module Provided ‘Facts’

• modules that are purely about fact gathering need to implement check_mode. they should not cause any changes
anyway so it should be as simple as adding check_mode=True when instantiating AnsibleModule. (The reason is
that playbooks which conditionalize based on fact information will only conditionalize correctly in check_mode
if the facts are returned in check_mode).

• Basic auth: module_utils.api has some helpers for doing basic auth with module_utils.urls.fetch_url(). If you
use those you may find you also want to fallback on environment variables for default values. If you do that,
be sure to use non-generic environment variables (like API_<MODULENAME>_USERNAME). Using generic
environment variables like API_USERNAME would conflict between modules.

Windows modules checklist

• Favour native powershell and .net ways of doing things over calls to COM libraries or calls to native executables
which may or may not be present in all versions of Windows

• modules are in powershell (.ps1 files) but the docs reside in same name python file (.py)

• look at ansible/lib/ansible/module_utils/powershell.ps1 for common code, avoid duplication

• Ansible uses strictmode version 2.0 so be sure to test with that enabled

All powershell modules must start:

#!powershell

<GPL header>

WANT_JSON
POWERSHELL_COMMON

To parse all arguments into a variable modules generally use:

$params = Parse-Args $args

Arguments

• Try and use state present and state absent like other modules

• You need to check that all your mandatory args are present. You can do this using the builtin Get-AnsibleParam
function.

• Required arguments:

$package = Get-AnsibleParam -obj $params -name name -failifempty $true

Required arguments with name validation:

$state = Get-AnsibleParam -obj $params -name "State" -ValidateSet "Present","Absent" -
→˓resultobj $resultobj -failifempty $true

274 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Optional arguments with name validation

$state = Get-AnsibleParam -obj $params -name "State" -default "Present" -ValidateSet
→˓"Present","Absent"

• If the “FailIfEmpty” is true, the resultobj parameter is used to specify the object returned to fail-json. You
can also override the default message using $emptyattributefailmessage (for missing required attributes) and
$ValidateSetErrorMessage (for attribute validation errors)

• Look at existing modules for more examples of argument checking.

Results

• The result object should always contain an attribute called changed set to either $true or $false

• Create your result object like this

$result = New-Object psobject @{
changed = $false
other_result_attribute = $some_value
};

If all is well, exit with a
Exit-Json $result

• Ensure anything you return, including errors can be converted to json.

• Be aware that because exception messages could contain almost anything.

• ConvertTo-Json will fail if it encounters a trailing in a string.

• If all is not well use Fail-Json to exit.

• Have you tested for powershell 3.0 and 4.0 compliance?

Deprecating and making module aliases

Starting in 1.8, you can deprecate modules by renaming them with a preceding _, i.e. old_cloud.py to
_old_cloud.py. This keeps the module available, but hides it from the primary docs and listing.

When deprecating a module:

1. Set the ANSIBLE_METADATA status to deprecated.

2. In the DOCUMENTATION section, add a deprecated field along the lines of:

deprecated: Deprecated in 2.3. Use M(whatmoduletouseinstead) instead.

3. Add the deprecation to CHANGELOG.md under the ###Deprecations: section.

Alias module names

You can also rename modules and keep an alias to the old name by using a symlink that starts with _. This example
allows the stat module to be called with fileinfo, making the following examples equivalent:

1.7. Developer Information 275

Ansible 2.2 Documentation, 2.4

EXAMPLES = '''
ln -s stat.py _fileinfo.py
ansible -m stat -a "path=/tmp" localhost
ansible -m fileinfo -a "path=/tmp" localhost
'''

Information for submitting a group of modules

Topics

• Information for submitting a group of modules

– Submitting a group of modules

– Before you start coding

– Naming Convention

– Speak to us

– Where to get support

– Your First Pull Request

– Subsequent PRs

– Finally

– New to Git or GitHub

Submitting a group of modules

This section discusses how to get multiple related modules into Ansible.

This document is intended for both companies wishing to add modules for their own products as well as users of 3rd
party products wishing to add Ansible functionality.

It’s based on module development best practices that the Ansible core team and community have accumulated.

Before you start coding

Although it’s tempting to get straight into coding, there are a few things to be aware of first. This list of prerequisites
is designed to help ensure that you develop high-quality modules that flow easily through the review process and get
into Ansible more quickly.

• Read though all the pages linked off Developing Modules; paying particular focus to the Contributing Your
Module to Ansible.

• For new modules going into Ansible 2.4 we are raising the bar so they must pass pep8 --ignore=E402
--max-line-length=160 cleanly.

• Starting with Ansible version 2.4, all new modules must support Python 2.6 and Python 3.5+. If this is an issue,
please contact us (see the “Speak to us” section later in this document to learn how).

• All modules shipped with Ansible must be done so under the GPLv3 license. Files under the lib/ansible/
module_utils/ directory should be done so under the BSD license.

276 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

• Have a look at the existing modules and how they’ve been named in the ../list_of_all_modules, especially in the
same functional area (such as cloud, networking, databases).

• Shared code can be placed into lib/ansible/module_utils/

• Shared documentation (for example describing common arguments) can be placed in lib/ansible/utils/
module_docs_fragments/.

• With great power comes great responsibility: Ansible module maintainers have a duty to help keep modules up
to date. As with all successful community projects, module maintainers should keep a watchful eye for reported
issues and contributions.

• Although not required, unit and/or integration tests are strongly recommended. Unit tests are especially valuable
when external resources (such as cloud or network devices) are required. For more information see Testing
Ansible and the Testing Working Group. * Starting with Ansible 2.4 all ../list_of_network_modules MUST have
unit tests.

Naming Convention

As you may have noticed when looking under lib/ansible/modules/we support up to two directories deep (but
no deeper), e.g. databases/mysql. This is used to group files on disk as well as group related modules into categories
and topics the Module Index, for example: ../list_of_database_modules.

The directory name should represent the product or OS name, not the company name.

Each module should have the above (or similar) prefix; see existing ../list_of_all_modules for existing examples.

Note:

• File and directory names are always in lower case

• Words are separated with an underscore (_) character

• Module names should be in the singular, rather than plural, eg command not commands

Speak to us

Circulating your ideas before coding is a good way to help you set off in the right direction.

After reading the “Before you start coding” section you will hopefully have a reasonable idea of the structure of your
modules.

We’ve found that writing a list of your proposed module names and a one or two line description of what they will
achieve and having that reviewed by Ansible is a great way to ensure the modules fit the way people have used Ansible
Modules before, and therefore make them easier to use.

Where to get support

Ansible has a thriving and knowledgeable community of module developers that is a great resource for getting your
questions answered.

On Community Information & Contributing you can find how to:

• Subscribe to the Mailing Lists - We suggest “Ansible Development List” (for codefreeze info) and “Ansible
Announce list”

• #ansible-devel - We have found that IRC #ansible-devel on FreeNodes IRC network works best for
module developers so we can have an interactive dialogue.

1.7. Developer Information 277

https://github.com/ansible/community/blob/master/MEETINGS.md

Ansible 2.2 Documentation, 2.4

• IRC meetings - Join the various weekly IRC meetings meeting schedule and agenda page

Your First Pull Request

Now that you’ve reviewed this document, you should be ready to open your first pull request.

The first PR is slightly different to the rest because it:

• defines the namespace

• provides a basis for detailed review that will help shape your future PRs

• may include shared documentation (docs_fragments) that multiple modules require

• may include shared code (module_utils) that multiple modules require

The first PR should include the following files:

• lib/ansible/modules/$category/$topic/__init__.py - An empty file to initialize namespace
and allow Python to import the files. Required new file

• lib/ansible/modules/$category/$topic/$yourfirstmodule.py - A single module. Re-
quired new file

• lib/ansible/utils/module_docs_fragments/$topic.py - Code documentation, such as details
regarding common arguments. Optional new file

• lib/ansible/module_utils/$topic.py - Code shared between more than one module, such as com-
mon arguments. Optional new file

• docs/docsite/rst/dev_guide/developing_module_utilities.rst - Document your new
module_utils file. Optional update to existing file

And that’s it.

Before pushing your PR to GitHub it’s a good idea to review the Contributing Your Module to Ansible again.

After publishing your PR to https://github.com/ansible/ansible, a Shippable CI test should run within a few minutes.
Check the results (at the end of the PR page) to ensure that it’s passing (green). If it’s not passing, inspect each of
the results. Most of the errors should be self-explanatory and are often related to badly formatted documentation (see
YAML Syntax) or code that isn’t valid Python 2.6 or valid Python 3.5 (see Ansible and Python 3). If you aren’t sure
what a Shippable test message means, copy it into the PR along with a comment and we will review.

If you need further advice, consider join the #ansible-devel IRC channel (see how in the “Where to get support”).

We have a ansibullbot helper that comments on GitHub Issues and PRs which should highlight important infor-
mation.

Subsequent PRs

By this point you first PR that defined the module namespace should have been merged. You can take the lessons
learned from the first PR and apply it to the rest of the modules.

Raise exactly one PR per module for the remaining modules.

Over the years we’ve experimented with different sized module PRs, ranging from one module to many tens of mod-
ules, and during that time we’ve found the following:

• A PR with a single file gets a higher quality review

• PRs with multiple modules are harder for the creator to ensure all feedback has been applied

278 Chapter 1. About Ansible

https://github.com/ansible/community/blob/master/MEETINGS.md
https://github.com/ansible/ansible

Ansible 2.2 Documentation, 2.4

• PRs with many modules take a lot more work to review, and tend to get passed over for easier-to-review PRs.

You can raise up to five PRs at one (5 PRs = 5 new modules) after your first PR has been merged. We’ve found this is
a good batch size to keep the review process flowing.

Finally

Now that your modules are integrated there are a few bits of housekeeping to be done

Maintainers Update Ansibullbot so it knows who to notify if/when bugs or PRs are raised against your modules
MAINTAINERS.txt.

If there are multiple people that can be notified, please list them. That avoids waiting on a single person who may be
unavailable for any reason. Note that in MAINTAINERS.txt you can take ownership of an entire directory.

Review Module web docs Review the autogenerated module documentation for each of your modules, found in
Module Docs to ensure they are correctly formatted. If there are any issues please fix by raising a single PR.

If the module documentation hasn’t been published live yet, please let a member of the Ansible Core Team know in
the #ansible-devel IRC channel.

New to Git or GitHub

We realise this may be your first use of Git or GitHub. The following guides may be of use:

• How to create a fork of ansible/ansible

• How to sync (update) your fork

• How to create a Pull Request (PR)

Please note that in the Ansible Git Repo the main branch is called devel rather than master, which is used in the
offical GitHub documentation

After your first PR has been merged ensure you “sync your fork” with ansible/ansible to ensure you’ve pulled
in the directory structure and and shared code or documentation previously created.

As stated in the GitHub documentation, always use feature branches for your PRs, never commit directly into devel.

Modules

This in-depth dive helps you understand Ansible’s program flow to execute modules. It is written for people working
on the portions of the Core Ansible Engine that execute a module. Those writing Ansible Modules may also find this
in-depth dive to be of interest, but individuals simply using Ansible Modules will not likely find this to be helpful.

Types of Modules

Ansible supports several different types of modules in its code base. Some of these are for backwards compatibility
and others are to enable flexibility.

Action Plugins

Action Plugins look like modules to end users who are writing playbooks but they’re distinct entities for the purposes
of this document. Action Plugins always execute on the controller and are sometimes able to do all work there (for

1.7. Developer Information 279

https://github.com/ansible/ansibullbot/blob/master/MAINTAINERS.txt
http://docs.ansible.com/ansible/modules_by_category.html
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/syncing-a-fork/
https://help.github.com/articles/about-pull-requests/

Ansible 2.2 Documentation, 2.4

instance, the debug Action Plugin which prints some text for the user to see or the assert Action Plugin which can
test whether several values in a playbook satisfy certain criteria.)

More often, Action Plugins set up some values on the controller, then invoke an actual module on the managed node
that does something with these values. An easy to understand version of this is the template Action Plugin. The
template Action Plugin takes values from the user to construct a file in a temporary location on the controller using
variables from the playbook environment. It then transfers the temporary file to a temporary file on the remote system.
After that, it invokes the copy module which operates on the remote system to move the file into its final location, sets
file permissions, and so on.

New-style Modules

All of the modules that ship with Ansible fall into this category.

New-style modules have the arguments to the module embedded inside of them in some manner. Non-new-style
modules must copy a separate file over to the managed node, which is less efficient as it requires two over-the-wire
connections instead of only one.

Python

New-style Python modules use the Ansiballz framework for constructing modules. All official modules (shipped with
Ansible) use either this or the powershell module framework.

These modules use imports from ansible.module_utils in order to pull in boilerplate module code, such as
argument parsing, formatting of return values as JSON, and various file operations.

: In Ansible, up to version 2.0.x, the official Python modules used the Module Replacer framework. For module
authors, Ansiballz is largely a superset of Module Replacer functionality, so you usually do not need to know about
one versus the other.

Powershell

New-style powershell modules use the Module Replacer framework for constructing modules. These modules get a
library of powershell code embedded in them before being sent to the managed node.

JSONARGS

Scripts can arrange for an argument string to be placed within them by placing the string
<<INCLUDE_ANSIBLE_MODULE_JSON_ARGS>> somewhere inside of the file. The module typically sets
a variable to that value like this:

json_arguments = """<<INCLUDE_ANSIBLE_MODULE_JSON_ARGS>>"""

Which is expanded as:

json_arguments = """{"param1": "test's quotes", "param2": "\"To be or not to be\" -
→˓Hamlet"}"""

: Ansible outputs a JSON string with bare quotes. Double quotes are used to quote string values, double quotes
inside of string values are backslash escaped, and single quotes may appear unescaped inside of a string value. To use

280 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

JSONARGS, your scripting language must have a way to handle this type of string. The example uses Python’s triple
quoted strings to do this. Other scripting languages may have a similar quote character that won’t be confused by any
quotes in the JSON or it may allow you to define your own start-of-quote and end-of-quote characters. If the language
doesn’t give you any of these then you’ll need to write a non-native JSON module or Old-style module instead.

The module typically parses the contents of json_arguments using a JSON library and then use them as native
variables throughout the rest of its code.

Non-native want JSON modules

If a module has the string WANT_JSON in it anywhere, Ansible treats it as a non-native module that accepts a filename
as its only command line parameter. The filename is for a temporary file containing a JSON string containing the
module’s parameters. The module needs to open the file, read and parse the parameters, operate on the data, and print
its return data as a JSON encoded dictionary to stdout before exiting.

These types of modules are self-contained entities. As of Ansible 2.1, Ansible only modifies them to change a shebang
line if present.

:

Examples of Non-native modules written in ruby are in the Ansible for Rubyists repository.

Binary Modules

From Ansible 2.2 onwards, modules may also be small binary programs. Ansible doesn’t perform any magic to make
these portable to different systems so they may be specific to the system on which they were compiled or require other
binary runtime dependencies. Despite these drawbacks, a site may sometimes have no choice but to compile a custom
module against a specific binary library if that’s the only way they have to get access to certain resources.

Binary modules take their arguments and will return data to Ansible in the same way as want JSON modules.

:

One example of a binary module written in go.

Old-style Modules

Old-style modules are similar to want JSON modules, except that the file that they take contains key=value pairs
for their parameters instead of JSON.

Ansible decides that a module is old-style when it doesn’t have any of the markers that would show that it is one of
the other types.

How modules are executed

When a user uses ansible or ansible-playbook, they specify a task to execute. The task is usually the name
of a module along with several parameters to be passed to the module. Ansible takes these values and processes them
in various ways before they are finally executed on the remote machine.

1.7. Developer Information 281

https://github.com/ansible/ansible-for-rubyists
https://github.com/ansible/ansible/blob/devel/test/integration/targets/binary_modules/library/helloworld.go

Ansible 2.2 Documentation, 2.4

executor/task_executor

The TaskExecutor receives the module name and parameters that were parsed from the playbook (or from the command
line in the case of /usr/bin/ansible). It uses the name to decide whether it’s looking at a module or an Action
Plugin. If it’s a module, it loads the Normal Action Plugin and passes the name, variables, and other information about
the task and play to that Action Plugin for further processing.

Normal Action Plugin

The normal Action Plugin executes the module on the remote host. It is the primary coordinator of much of the work
to actually execute the module on the managed machine.

• It takes care of creating a connection to the managed machine by instantiating a Connection class according
to the inventory configuration for that host.

• It adds any internal Ansible variables to the module’s parameters (for instance, the ones that pass along no_log
to the module).

• It takes care of creating any temporary files on the remote machine and cleans up afterwards.

• It does the actual work of pushing the module and module parameters to the remote host, although the mod-
ule_common code described in the next section does the work of deciding which format those will take.

• It handles any special cases regarding modules (for instance, various complications around Windows modules
that must have the same names as Python modules, so that internal calling of modules from other Action Plugins
work.)

Much of this functionality comes from the BaseAction class, which lives in plugins/action/__init__.py.
It makes use of Connection and Shell objects to do its work.

: When tasks are run with the async: parameter, Ansible uses the async Action Plugin instead of the normal
Action Plugin to invoke it. That program flow is currently not documented. Read the source for information on how
that works.

executor/module_common.py

Code in executor/module_common.py takes care of assembling the module to be shipped to the managed
node. The module is first read in, then examined to determine its type. PowerShell and JSON-args modules are passed
through Module Replacer. New-style Python modules are assembled by Ansiballz. Non-native-want-JSON, Binary
modules, and Old-Style modules aren’t touched by either of these and pass through unchanged. After the assembling
step, one final modification is made to all modules that have a shebang line. Ansible checks whether the interpreter in
the shebang line has a specific path configured via an ansible_$X_interpreter inventory variable. If it does,
Ansible substitutes that path for the interpreter path given in the module. After this, Ansible returns the complete
module data and the module type to the Normal Action which continues execution of the module.

Next we’ll go into some details of the two assembler frameworks.

Module Replacer

The Module Replacer framework is the original framework implementing new-style modules. It is essentially a pre-
processor (like the C Preprocessor for those familiar with that programming language). It does straight substitutions
of specific substring patterns in the module file. There are two types of substitutions:

282 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

• Replacements that only happen in the module file. These are public replacement strings that modules can utilize
to get helpful boilerplate or access to arguments.

– from ansible.module_utils.MOD_LIB_NAME import * is replaced with the contents of the
ansible/module_utils/MOD_LIB_NAME.py These should only be used with new-style Python
modules.

– #<<INCLUDE_ANSIBLE_MODULE_COMMON>> is equivalent to from ansible.
module_utils.basic import * and should also only apply to new-style Python modules.

– # POWERSHELL_COMMON substitutes the contents of ansible/module_utils/powershell.
ps1. It should only be used with new-style Powershell modules.

• Replacements that are used by ansible.module_utils code. These are internal replacement patterns.
They may be used internally, in the above public replacements, but shouldn’t be used directly by modules.

– "<<ANSIBLE_VERSION>>" is substituted with the Ansible version. In new-style Python modules
under the Ansiballz frameworkthe proper way is to instead instantiate an AnsibleModule and then
access the version from :attr:AnsibleModule.ansible_version.

– "<<INCLUDE_ANSIBLE_MODULE_COMPLEX_ARGS>>" is substituted with a string which is the
Python repr of the JSON encoded module parameters. Using repr on the JSON string makes it safe
to embed in a Python file. In new-style Python modules under the Ansiballz framework this is better
accessed by instantiating an AnsibleModule and then using AnsibleModule.params.

– <<SELINUX_SPECIAL_FILESYSTEMS>> substitutes a string which is a comma separated list of file
systems which have a file system dependent security context in SELinux. In new-style Python modules,
if you really need this you should instantiate an AnsibleModule and then use AnsibleModule.
_selinux_special_fs. The variable has also changed from a comma separated string of file system
names to an actual python list of filesystem names.

– <<INCLUDE_ANSIBLE_MODULE_JSON_ARGS>> substitutes the module parameters as a JSON
string. Care must be taken to properly quote the string as JSON data may contain quotes. This pattern is
not substituted in new-style Python modules as they can get the module parameters another way.

– The string syslog.LOG_USER is replaced wherever it occurs with the syslog_facility which
was named in ansible.cfg or any ansible_syslog_facility inventory variable that applies
to this host. In new-style Python modules this has changed slightly. If you really need to access it,
you should instantiate an AnsibleModule and then use AnsibleModule._syslog_facility
to access it. It is no longer the actual syslog facility and is now the name of the syslog facility. See the
documentation on internal arguments for details.

Ansiballz

Ansible 2.1 switched from the Module Replacer framework to the Ansiballz framework for assembling modules.
The Ansiballz framework differs from module replacer in that it uses real Python imports of things in ansible/
module_utils instead of merely preprocessing the module. It does this by constructing a zipfile – which includes
the module file, files in ansible/module_utils that are imported by the module, and some boilerplate to pass
in the module’s parameters. The zipfile is then Base64 encoded and wrapped in a small Python script which decodes
the Base64 encoding and places the zipfile into a temp directory on the managed node. It then extracts just the ansible
module script from the zip file and places that in the temporary directory as well. Then it sets the PYTHONPATH to
find python modules inside of the zip file and invokes python on the extracted ansible module.

: Ansible wraps the zipfile in the Python script for two reasons:

• for compatibility with Python-2.6 which has a less functional version of Python’s -m command line switch.

1.7. Developer Information 283

Ansible 2.2 Documentation, 2.4

• so that pipelining will function properly. Pipelining needs to pipe the Python module into the Python interpreter
on the remote node. Python understands scripts on stdin but does not understand zip files.

In Ansiballz, any imports of Python modules from the ansible.module_utils package trigger inclusion of
that Python file into the zipfile. Instances of #<<INCLUDE_ANSIBLE_MODULE_COMMON>> in the module are
turned into from ansible.module_utils.basic import * and ansible/module-utils/basic.
py is then included in the zipfile. Files that are included from module_utils are themselves scanned for imports
of other Python modules from module_utils to be included in the zipfile as well.

: At present, the Ansiballz Framework cannot determine whether an import should be included if it is a relative
import. Always use an absolute import that has ansible.module_utils in it to allow Ansiballz to determine
that the file should be included.

Passing args

In Module Replacer, module arguments are turned into a JSON-ified string and substituted into the combined module
file. In Ansiballz, the JSON-ified string is passed into the module via stdin. When a ansible.module_utils.
basic.AnsibleModule is instantiated, it parses this string and places the args into AnsibleModule.params
where it can be accessed by the module’s other code.

: Internally, the AnsibleModule uses the helper function, ansible.module_utils.basic.
_load_params(), to load the parameters from stdin and save them into an internal global variable. Very dy-
namic custom modules which need to parse the parameters prior to instantiating an AnsibleModule may use
_load_params to retrieve the parameters. Be aware that _load_params is an internal function and may change
in breaking ways if necessary to support changes in the code. However, we’ll do our best not to break it gratuitously,
which is not something that can be said for either the way parameters are passed or the internal global variable.

Internal arguments

Both Module Replacer and Ansiballz send additional arguments to the module beyond those which the user specified in
the playbook. These additional arguments are internal parameters that help implement global Ansible features. Mod-
ules often do not need to know about these explicitly as the features are implemented in ansible.module_utils.
basic but certain features need support from the module so it’s good to know about them.

_ansible_no_log

This is a boolean. If it’s True then the playbook specified no_log (in a task’s parameters or as a play parameter).
This automatically affects calls to AnsibleModule.log(). If a module implements its own logging then it needs
to check this value. The best way to look at this is for the module to instantiate an AnsibleModule and then check
the value of AnsibleModule.no_log.

: no_log specified in a module’s argument_spec are handled by a different mechanism.

284 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

_ansible_debug

This is a boolean that turns on more verbose logging. If a module uses AnsibleModule.debug() rather than
AnsibleModule.log() then the messages are only logged if this is True. This also turns on logging of external
commands that the module executes. This can be changed via the debug setting in ansible.cfg or the environ-
ment variable ANSIBLE_DEBUG. If, for some reason, a module must access this, it should do so by instantiating an
AnsibleModule and accessing AnsibleModule._debug.

_ansible_diff

This boolean is turned on via the --diff command line option. If a module supports it, it will tell the module to show
a unified diff of changes to be made to templated files. The proper way for a module to access this is by instantiating
an AnsibleModule and accessing AnsibleModule._diff.

_ansible_verbosity

This value could be used for finer grained control over logging. However, it is currently unused.

_ansible_selinux_special_fs

This is a list of names of filesystems which should have a special selinux context. They are used by the
AnsibleModule methods which operate on files (changing attributes, moving, and copying). The list of names
is set via a comma separated string of filesystem names from ansible.cfg:

ansible.cfg
[selinux]
special_context_filesystems=nfs,vboxsf,fuse,ramfs

If a module cannot use the builtin AnsibleModule methods to manipulate files and needs to know about these spe-
cial context filesystems, it should instantiate an AnsibleModule and then examine the list in AnsibleModule.
_selinux_special_fs.

This replaces ansible.module_utils.basic.SELINUX_SPECIAL_FS from Module Replacer. In module
replacer it was a comma separated string of filesystem names. Under Ansiballz it’s an actual list.

2.1 .

_ansible_syslog_facility

This parameter controls which syslog facility ansible module logs to. It may be set by changing the
syslog_facility value in ansible.cfg. Most modules should just use AnsibleModule.log() which
will then make use of this. If a module has to use this on its own, it should instantiate an AnsibleModule and then
retrieve the name of the syslog facility from AnsibleModule._syslog_facility. The code will look slightly
different than it did under Module Replacer due to how hacky the old way was

Old way
import syslog
syslog.openlog(NAME, 0, syslog.LOG_USER)

New way
import syslog
facility_name = module._syslog_facility

1.7. Developer Information 285

Ansible 2.2 Documentation, 2.4

facility = getattr(syslog, facility_name, syslog.LOG_USER)
syslog.openlog(NAME, 0, facility)

2.1 .

_ansible_version

This parameter passes the version of ansible that runs the module. To access it, a module should instantiate an
AnsibleModule and then retrieve it from AnsibleModule.ansible_version. This replaces ansible.
module_utils.basic.ANSIBLE_VERSION from Module Replacer.

2.1 .

Special Considerations

Pipelining

Ansible can transfer a module to a remote machine in one of two ways:

• it can write out the module to a temporary file on the remote host and then use a second connection to the remote
host to execute it with the interpreter that the module needs

• or it can use what’s known as pipelining to execute the module by piping it into the remote interpreter’s stdin.

Pipelining only works with modules written in Python at this time because Ansible only knows that Python supports
this mode of operation. Supporting pipelining means that whatever format the module payload takes before being sent
over the wire must be executable by Python via stdin.

Why pass args over stdin?

Passing arguments via stdin was chosen for the following reasons:

• When combined with pipelining, this keeps the module’s arguments from temporarily being saved onto disk on
the remote machine. This makes it harder (but not impossible) for a malicious user on the remote machine to
steal any sensitive information that may be present in the arguments.

• Command line arguments would be insecure as most systems allow unprivileged users to read the full comman-
dline of a process.

• Environment variables are usually more secure than the commandline but some systems limit the total size of
the environment. This could lead to truncation of the parameters if we hit that limit.

Appendix: Module Utilities

Ansible provides a number of module utilities that provide helper functions that you can use when developing your
own modules. The basic.py module utility provides the main entry point for accessing the Ansible library, and all
Ansible modules must, at minimum, import from basic.py:

from ansible.module_utils.basic import *

The following is a list of module_utils files and a general description. The module utility source code lives in the
./lib/module_utils directory under your main Ansible path - for more details on any specific module utility, please see
the source code.

286 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

• a10.py - Utilities used by the a10_server module to manage A10 Networks devices.

• api.py - Adds shared support for generic API modules.

• aos.py - Module support utilities for managing Apstra AOS Server.

• asa.py - Module support utilities for managing Cisco ASA network devices.

• azure_rm_common.py - Definitions and utilities for Microsoft Azure Resource Manager template deployments.

• basic.py - General definitions and helper utilities for Ansible modules.

• cloudstack.py - Utilities for CloudStack modules.

• database.py - Miscellaneous helper functions for PostGRES and MySQL

• docker_common.py - Definitions and helper utilities for modules working with Docker.

• ec2.py - Definitions and utilities for modules working with Amazon EC2

• eos.py - Helper functions for modules working with EOS networking devices.

• f5.py - Helper functions for modules working with F5 networking devices.

• facts.py - Helper functions for modules that return facts.

• gce.py - Definitions and helper functions for modules that work with Google Compute Engine resources.

• ios.py - Definitions and helper functions for modules that manage Cisco IOS networking devices

• iosxr.py - Definitions and helper functions for modules that manage Cisco IOS-XR networking devices

• ismount.py - Contains single helper function that fixes os.path.ismount

• junos.py - Definitions and helper functions for modules that manage Junos networking devices

• known_hosts.py - utilities for working with known_hosts file

• mysql.py - Allows modules to connect to a MySQL instance

• netapp.py - Functions and utilities for modules that work with the NetApp storage platforms.

• netcfg.py - Configuration utility functions for use by networking modules

• netcmd.py - Defines commands and comparison operators for use in networking modules

• network.py - Functions for running commands on networking devices

• nxos.py - Contains definitions and helper functions specific to Cisco NXOS networking devices

• openstack.py - Utilities for modules that work with Openstack instances.

• openswitch.py - Definitions and helper functions for modules that manage OpenSwitch devices

• powershell.ps1 - Utilities for working with Microsoft Windows clients

• pycompat24.py - Exception workaround for Python 2.4.

• rax.py - Definitions and helper functions for modules that work with Rackspace resources.

• redhat.py - Functions for modules that manage Red Hat Network registration and subscriptions

• service.py - Contains utilities to enable modules to work with Linux services (placeholder, not in use).

• shell.py - Functions to allow modules to create shells and work with shell commands

• six/__init__.py - Bundled copy of the Six Python library to aid in writing code compatible with both Python 2
and Python 3.

• splitter.py - String splitting and manipulation utilities for working with Jinja2 templates

1.7. Developer Information 287

https://pythonhosted.org/six/

Ansible 2.2 Documentation, 2.4

• urls.py - Utilities for working with http and https requests

• vca.py - Contains utilities for modules that work with VMware vCloud Air

• vmware.py - Contains utilities for modules that work with VMware vSphere VMs

• vyos.py - Definitions and functions for working with VyOS networking

Developing Plugins

Topics

• Developing Plugins

– Callback Plugins

* Example Callback Plugins

* Configuring Callback Plugins

· Managing stdout

* Developing Callback Plugins

– Connection Plugins

– Lookup Plugins

– Vars Plugins

– Filter Plugins

– Test Plugins

– Distributing Plugins

Plugins are pieces of code that augment Ansible’s core functionality. Ansible ships with a number of handy plugins,
and you can easily write your own.

The following types of plugins are available:

• Action plugins are front ends to modules and can execute actions on the controller before calling the modules
themselves.

• Cache plugins are used to keep a cache of ‘facts’ to avoid costly fact-gathering operations.

• Callback plugins enable you to hook into Ansible events for display or logging purposes.

• Connection plugins define how to communicate with inventory hosts.

• Filters plugins allow you to manipulate data inside Ansible plays and/or templates. This is a Jinja2 feature;
Ansible ships extra filter plugins.

• Lookup plugins are used to pull data from an external source. These are implemented using a custom Jinja2
function.

• Strategy plugins control the flow of a play and execution logic.

• Shell plugins deal with low-level commands and formatting for the different shells Ansible can encounter on
remote hosts.

• Test plugins allow you to validate data inside Ansible plays and/or templates. This is a Jinja2 feature; Ansible
ships extra test plugins.

288 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

• Vars plugins inject additional variable data into Ansible runs that did not come from an inventory, playbook, or
the command line.

This section describes the various types of plugins and how to implement them.

Callback Plugins

Callback plugins enable adding new behaviors to Ansible when responding to events. By default, callback plugins
control most of the output you see when running the command line programs.

Example Callback Plugins

Ansible comes with a number of callback plugins that you can look at for examples. These can be found in
lib/ansible/plugins/callback.

The log_plays callback is an example of how to intercept playbook events to a log file, and the mail callback sends
email when playbooks complete.

The osx_say callback provided is particularly entertaining – it will respond with computer synthesized speech on OS
X in relation to playbook events, and is guaranteed to entertain and/or annoy coworkers.

Configuring Callback Plugins

You can activate a custom callback by either dropping it into a callback_plugins directory adjacent to your play or
inside a role or by putting it in one of the callback directory sources configured in ansible.cfg.

Plugins are loaded in alphanumeric order; for example, a plugin implemented in a file named 1_first.py would run
before a plugin file named 2_second.py.

Most callbacks shipped with Ansible are disabled by default and need to be whitelisted in your ansible.cfg file in order
to function. For example:

#callback_whitelist = timer, mail, mycallbackplugin

Managing stdout

You can only have one plugin be the main manager of your console output. If you want to replace the default, you
should define CALLBACK_TYPE = stdout in the subclass and then configure the stdout plugin in ansible.cfg. For
example:

#stdout_callback = mycallbackplugin

Developing Callback Plugins

Callback plugins are created by creating a new class with the Base(Callbacks) class as the parent:

from ansible.plugins.callback import CallbackBase
from ansible import constants as C

class CallbackModule(CallbackBase):
pass

1.7. Developer Information 289

https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/callback
https://github.com/ansible/ansible/blob/devel/lib/ansible/plugins/callback/log_plays.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/plugins/callback/mail.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/plugins/callback/osx_say.py

Ansible 2.2 Documentation, 2.4

From there, override the specific methods from the CallbackBase that you want to provide a callback for. For plugins
intended for use with Ansible version 2.0 and later, you should only override methods that start with v2. For a complete
list of methods that you can override, please see __init__.py in the lib/ansible/plugins/callback directory.

The following example shows how Ansible’s timer plugin is implemented:

Make coding more python3-ish
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type

from datetime import datetime

from ansible.plugins.callback import CallbackBase

class CallbackModule(CallbackBase):
"""
This callback module tells you how long your plays ran for.
"""
CALLBACK_VERSION = 2.0
CALLBACK_TYPE = 'aggregate'
CALLBACK_NAME = 'timer'
CALLBACK_NEEDS_WHITELIST = True

def __init__(self):

super(CallbackModule, self).__init__()

self.start_time = datetime.now()

def days_hours_minutes_seconds(self, runtime):
minutes = (runtime.seconds // 60) % 60
r_seconds = runtime.seconds - (minutes * 60)
return runtime.days, runtime.seconds // 3600, minutes, r_seconds

def playbook_on_stats(self, stats):
self.v2_playbook_on_stats(stats)

def v2_playbook_on_stats(self, stats):
end_time = datetime.now()
runtime = end_time - self.start_time
self._display.display("Playbook run took %s days, %s hours, %s minutes, %s

→˓seconds" % (self.days_hours_minutes_seconds(runtime)))

Note that the CALLBACK_VERSION and CALLBACK_NAME definitions are required for properly functioning
plugins for Ansible >=2.0.

Connection Plugins

By default, Ansible ships with a ‘paramiko’ SSH, native ssh (just called ‘ssh’), ‘local’ connection type, and there
are also some minor players like ‘chroot’ and ‘jail’. All of these can be used in playbooks and with /usr/bin/ansible
to decide how you want to talk to remote machines. The basics of these connection types are covered in the Getting
Started section. Should you want to extend Ansible to support other transports (SNMP, Message bus, etc) it’s as simple
as copying the format of one of the existing modules and dropping it into the connection plugins directory. The value
of ‘smart’ for a connection allows selection of paramiko or openssh based on system capabilities, and chooses ‘ssh’ if
OpenSSH supports ControlPersist, in Ansible 1.2.1 and later. Previous versions did not support ‘smart’.

290 Chapter 1. About Ansible

https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/callback

Ansible 2.2 Documentation, 2.4

More documentation on writing connection plugins is pending, though you can jump into
lib/ansible/plugins/connection and figure things out pretty easily.

Lookup Plugins

Lookup plugins are used to pull in data from external data stores. Lookup plugins can be used within playbooks
for both looping - playbook language constructs like “with_fileglob” and “with_items” are implemented via lookup
plugins - and to return values into a variable or parameter.

Here’s a simple lookup plugin implementation - this lookup returns the contents of a text file as a variable:

from ansible.errors import AnsibleError, AnsibleParserError
from ansible.plugins.lookup import LookupBase

try:
from __main__ import display

except ImportError:
from ansible.utils.display import Display
display = Display()

class LookupModule(LookupBase):

def run(self, terms, variables=None, **kwargs):

ret = []

for term in terms:
display.debug("File lookup term: %s" % term)

Find the file in the expected search path
lookupfile = self.find_file_in_search_path(variables, 'files', term)
display.vvvv(u"File lookup using %s as file" % lookupfile)
try:

if lookupfile:
contents, show_data = self._loader._get_file_contents(lookupfile)
ret.append(contents.rstrip())

else:
raise AnsibleParserError()

except AnsibleParserError:
raise AnsibleError("could not locate file in lookup: %s" % term)

return ret

An example of how this lookup is called:

- hosts: all

vars:
contents: "{{ lookup('file', '/etc/foo.txt') }}"

tasks:

- debug: msg="the value of foo.txt is {{ contents }} as seen today {{ lookup(
→˓'pipe', 'date +"%Y-%m-%d"') }}"

Errors encountered during execution should be returned by raising AnsibleError() with a message describing the error.

1.7. Developer Information 291

https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/connection

Ansible 2.2 Documentation, 2.4

Any strings returned by your lookup plugin implementation that could ever contain non-ASCII characters must be
converted into Python’s unicode type because the strings will be run through jinja2. To do this, you can use:

from ansible.module_utils._text import to_text
result_string = to_text(result_string)

For more example lookup plugins, check out the source code for the lookup plugins that are included with Ansible
here: lib/ansible/plugins/lookup.

For usage examples of lookup plugins, see Using Lookups.

Vars Plugins

Playbook constructs like ‘host_vars’ and ‘group_vars’ work via ‘vars’ plugins. They inject additional variable data
into ansible runs that did not come from an inventory, playbook, or command line. Note that variables can also be
returned from inventory, so in most cases, you won’t need to write or understand vars_plugins.

More documentation on writing vars plugins is pending, though you can jump into lib/ansible/inventory/vars_plugins
and figure things out pretty easily.

If you find yourself wanting to write a vars_plugin, it’s more likely you should write an inventory script instead.

Filter Plugins

Filter plugins are used for manipulating data. They are a feature of Jinja2 and are also available in Jinja2 templates
used by the template module. As with all plugins, they can be easily extended, but instead of having a file for each one
you can have several per file. Most of the filter plugins shipped with Ansible reside in a core.py.

See lib/ansible/plugins/filter for details.

Test Plugins

Test plugins are for verifying data. They are a feature of Jinja2 and are also available in Jinja2 templates used by the
template module. As with all plugins, they can be easily extended, but instead of having a file for each one you can
have several per file. Most of the test plugins shipped with Ansible reside in a core.py. These are specially useful in
conjunction with some filter plugins like map and select; they are also available for conditional directives like when:.

See lib/ansible/plugins/test for details.

Distributing Plugins

Plugins are loaded from the library installed path and the configured plugins directory (check your ansible.cfg). The
location can vary depending on how you installed Ansible (pip, rpm, deb, etc) or by the OS/Distribution/Packager.
Plugins are automatically loaded when you have one of the following subfolders adjacent to your playbook or inside a
role:

• action_plugins

• lookup_plugins

• callback_plugins

• connection_plugins

• filter_plugins

292 Chapter 1. About Ansible

https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/lookup
http://docs.ansible.com/ansible/playbooks_lookups.html
https://github.com/ansible/ansible/tree/devel/lib/ansible/inventory/vars_plugins
https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/filter
https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/test

Ansible 2.2 Documentation, 2.4

• strategy_plugins

• cache_plugins

• test_plugins

• shell_plugins

When shipped as part of a role, the plugin will be available as soon as the role is called in the play.

:

About Modules List of built-in modules

Python API Learn about the Python API for task execution

Developing Dynamic Inventory Sources Learn about how to develop dynamic inventory sources

Developing Modules Learn about how to write Ansible modules

Mailing List The development mailing list

irc.freenode.net #ansible IRC chat channel

Developing Dynamic Inventory Sources

Topics

• Script Conventions

• Tuning the External Inventory Script

As described in Dynamic Inventory, Ansible can pull inventory information from dynamic sources, including cloud
sources.

How do we write a new one?

Simple! We just create a script or program that can print JSON in the right format when fed the proper arguments.
You can do this in any language.

Script Conventions

When the external node script is called with the single argument --list, the script must output a JSON encoded
hash/dictionary of all the groups to be managed to stdout. Each group’s value should be either a hash/dictionary
containing a list of each host/IP, potential child groups, and potential group variables, or simply a list of host/IP
addresses, like so:

{
"databases": {

"hosts": ["host1.example.com", "host2.example.com"],
"vars": {

"a": true
}

},
"webservers": ["host2.example.com", "host3.example.com"],
"atlanta": {

"hosts": ["host1.example.com", "host4.example.com", "host5.example.com"],
"vars": {

"b": false

1.7. Developer Information 293

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

},
"children": ["marietta", "5points"]

},
"marietta": ["host6.example.com"],
"5points": ["host7.example.com"]

}

1.0 .

Before version 1.0, each group could only have a list of hostnames/IP addresses, like the webservers, marietta, and
5points groups above.

When called with the arguments --host <hostname> (where <hostname> is a host from above), the script must
print either an empty JSON hash/dictionary, or a hash/dictionary of variables to make available to templates and
playbooks. Printing variables is optional, if the script does not wish to do this, printing an empty hash/dictionary is
the way to go:

{
"favcolor": "red",
"ntpserver": "wolf.example.com",
"monitoring": "pack.example.com"

}

Tuning the External Inventory Script

1.3 .

The stock inventory script system detailed above works for all versions of Ansible, but calling --host for every host
can be rather expensive, especially if it involves expensive API calls to a remote subsystem. In Ansible 1.3 or later, if
the inventory script returns a top level element called “_meta”, it is possible to return all of the host variables in one
inventory script call. When this meta element contains a value for “hostvars”, the inventory script will not be invoked
with --host for each host. This results in a significant performance increase for large numbers of hosts, and also
makes client side caching easier to implement for the inventory script.

The data to be added to the top level JSON dictionary looks like this:

{

results of inventory script as above go here
...

"_meta": {
"hostvars": {

"moocow.example.com": {
"asdf" : 1234

},
"llama.example.com": {

"asdf": 5678
}

}
}

}

:

Python API Python API to Playbooks and Ad Hoc Task Execution

Developing Modules How to develop modules

294 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Developing Plugins How to develop plugins

Ansible Tower REST API endpoint and GUI for Ansible, syncs with dynamic inventory

Development Mailing List Mailing list for development topics

irc.freenode.net #ansible IRC chat channel

Developing the Ansible Core Engine

Although many of the pieces of the Ansible Core Engine are plugins that can be swapped out via playbook directives
or configuration, there are still pieces of the Engine that are not modular. The documents here give insight into how
those pieces work together.

:

Python API Learn about the Python API for task execution

Developing Plugins Learn about developing plugins

Mailing List The development mailing list

irc.freenode.net #ansible-devel IRC chat channel

Ansible and Python 3

Ansible is pursuing a strategy of having one code base that runs on both Python-2 and Python-3 because we want
Ansible to be able to manage a wide variety of machines. Contributors to Ansible should be aware of the tips in this
document so that they can write code that will run on the same versions of Python as the rest of Ansible.

Ansible can be divided into three overlapping pieces for the purposes of porting:

1. Controller-side code. This is the code which runs on the machine where you invoke /usr/bin/ansible

2. Modules. This is the code which Ansible transmits over the wire and invokes on the managed machine.

3. module_utils code. This is code whose primary purpose is to be used by the modules to perform tasks. However,
some controller-side code might use generic functions from here.

Much of the knowledge of porting code will be usable on all three of these pieces but there are some special consider-
ations for some of it as well. Information that is generally applicable to all three places is located in the controller-side
section.

Minimum Version of Python-3.x and Python-2.x

In both controller side and module code, we support Python-3.5 or greater and Python-2.6 or greater. Python-3.5
was chosen as a minimum because it is the earliest Python-3 version adopted as the default Python by a Long Term
Support (LTS) Linux distribution (in this case, Ubuntu-16.04). Previous LTS Linux distributions shipped with a
Python-2 version which users can rely upon instead of the Python-3 version.

For Python-2, the default is for modules to run on at least Python-2.6. This allows users with older distributions that are
stuck on Python-2.6 to manage their machines. Modules are allowed to drop support for Python-2.6 when one of their
dependent libraries requires a higher version of Python. This is not an invitation to add unnecessary dependent libraries
in order to force your module to be usable only with a newer version of Python; instead it is an acknowledgment that
some libraries (for instance, boto3 and docker-py) will only function with a newer version of Python.

: Python-2.4 Module-side Support:

1.7. Developer Information 295

https://ansible.com/ansible-tower
http://groups.google.com/group/ansible-devel
http://irc.freenode.net
http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Support for Python-2.4 and Python-2.5 was dropped in Ansible-2.4. RHEL-5 (and its rebuilds like CentOS-5) were
supported until April of 2017. Ansible-2.3 was released in April of 2017 and was the last Ansible release to support
Python-2.4 on the module-side.

Porting Controller Code to Python 3

Most of the general tips for porting code to be used on both Python-2 and Python-3 applies to porting controller code.
The best place to start learning to port code is Lennart Regebro’s book: Porting to Python 3.

The book describes several strategies for porting to Python 3. The one we’re using is to support Python-2 and Python-3
from a single code base

Controller String Strategy

Background

One of the most essential things to decide upon for porting code to Python-3 is what string model to use. Strings can
be an array of bytes (like in C) or they can be an array of text. Text is what we think of as letters, digits, numbers,
other printable symbols, and a small number of unprintable “symbols” (control codes).

In Python-2, the two types for these (str for bytes and unicode for text) are often used interchangeably. When
dealing only with ASCII characters, the strings can be combined, compared, and converted from one type to another
automatically. When non-ASCII characters are introduced, Python starts throwing exceptions due to not knowing what
encoding the non-ASCII characters should be in.

Python-3 changes this behavior by making the separation between bytes (bytes) and text (str) more strict. Python
will throw an exception when trying to combine and compare the two types. The programmer has to explicitly convert
from one type to the other to mix values from each.

This change makes it immediately apparent to the programmer when code is mixing the types inappropriately, rather
than working until one of their users causes an exception by entering non-ASCII input. However, it forces the pro-
grammer to proactively define a strategy for working with strings in their program so that they don’t mix text and byte
strings unintentionally.

Unicode Sandwich

In controller-side code we use a strategy known as the Unicode Sandwich (named after Python-2’s unicode text
type). For Unicode Sandwich we know that at the border of our code and the outside world (for example, file and
network IO, environment variables, and some library calls) we are going to receive bytes. We need to transform these
bytes into text and use that throughout the internal portions of our code. When we have to send those strings back out
to the outside world we first convert the text back into bytes. To visualize this, imagine a ‘sandwich’ consisting of a
top and bottom layer of bytes, a layer of conversion between, and all text type in the center.

Common Borders

This is a partial list of places where we have to convert to and from bytes. It’s not exhaustive but gives you an idea of
where to watch for problems.

296 Chapter 1. About Ansible

http://python3porting.com/
http://python3porting.com/strategies.html#python-2-and-python-3-without-conversion
http://python3porting.com/strategies.html#python-2-and-python-3-without-conversion
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Ansible 2.2 Documentation, 2.4

Reading and writing to files

In Python-2, reading from files yields bytes. In Python-3, it can yield text. To make code that’s portable to both we
don’t make use of Python-3’s ability to yield text but instead do the conversion explicitly ourselves. For example:

from ansible.module_utils._text import to_text

with open('filename-with-utf8-data.txt', 'rb') as my_file:
b_data = my_file.read()
try:

data = to_text(b_data, errors='surrogate_or_strict')
except UnicodeError:

Handle the exception gracefully -- usually by displaying a good
user-centric error message that can be traced back to this piece
of code.
pass

: Much of Ansible assumes that all encoded text is UTF-8. At some point, if there is demand for other encodings we
may change that, but for now it is safe to assume that bytes are UTF-8.

Writing to files is the opposite process:

from ansible.module_utils._text import to_bytes

with open('filename.txt', 'wb') as my_file:
my_file.write(to_bytes(some_text_string))

Note that we don’t have to catch UnicodeError here because we’re transforming to UTF-8 and all text strings in
Python can be transformed back to UTF-8.

Filesystem Interaction

Dealing with filenames often involves dropping back to bytes because on UNIX-like systems filenames are bytes. On
Python-2, if we pass a text string to these functions, the text string will be converted to a byte string inside of the
function and a traceback will occur if non-ASCII characters are present. In Python-3, a traceback will only occur if
the text string can’t be decoded in the current locale, but it’s still good to be explicit and have code which works on
both versions:

import os.path

from ansible.module_utils._text import to_bytes

filename = u'/var/tmp/.txt'
f = open(to_bytes(filename), 'wb')
mtime = os.path.getmtime(to_bytes(filename))
b_filename = os.path.expandvars(to_bytes(filename))
if os.path.exists(to_bytes(filename)):

pass

When you are only manipulating a filename as a string without talking to the filesystem (or a C library which talks to
the filesystem) you can often get away without converting to bytes:

import os.path

1.7. Developer Information 297

https://docs.python.org/3/library/exceptions.html#UnicodeError

Ansible 2.2 Documentation, 2.4

os.path.join(u'/var/tmp/café', u'')
os.path.split(u'/var/tmp/café/')

On the other hand, if the code needs to manipulate the filename and also talk to the filesystem, it can be more convenient
to transform to bytes right away and manipulate in bytes.

: Make sure all variables passed to a function are the same type. If you’re working with something like os.
path.join() which takes multiple strings and uses them in combination, you need to make sure that all the
types are the same (either all bytes or all text). Mixing bytes and text will cause tracebacks.

Interacting with Other Programs

Interacting with other programs goes through the operating system and C libraries and operates on things that the
UNIX kernel defines. These interfaces are all byte-oriented so the Python interface is byte oriented as well. On both
Python-2 and Python-3, byte strings should be given to Python’s subprocess library and byte strings should be expected
back from it.

One of the main places in Ansible’s controller code that we interact with other programs is the connection plugins’
exec_command methods. These methods transform any text strings they receive in the command (and arguments
to the command) to execute into bytes and return stdout and stderr as byte strings Higher level functions (like action
plugins’ _low_level_execute_command) transform the output into text strings.

Tips, tricks, and idioms to adopt

Forwards Compatibility Boilerplate

Use the following boilerplate code at the top of all controller-side modules to make certain constructs act the same
way on Python-2 and Python-3:

Make coding more python3-ish
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type

__metaclass__ = type makes all classes defined in the file into new-style classes without explicitly inheriting
from object.

The __future__ imports do the following:

absolute_import Makes imports look in sys.path for the modules being imported, skipping the di-
rectory in which the module doing the importing lives. If the code wants to use the directory in
which the module doing the importing, there’s a new dot notation to do so.

division Makes division of integers always return a float. If you need to find the quotient use x // y
instead of x / y.

print_function Changes print() from a keyword into a function.

:

• PEP 0328: Absolute Imports

• PEP 0238: Division

• PEP 3105: Print function

298 Chapter 1. About Ansible

https://docs.python.org/3/library/os.path.html#os.path.join
https://docs.python.org/3/library/os.path.html#os.path.join
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#print
https://www.python.org/dev/peps/pep-0328/#guido-s-decision
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-3105

Ansible 2.2 Documentation, 2.4

Prefix byte strings with “b_”

Since mixing text and bytes types leads to tracebacks we want to be clear about what variables hold text and what
variables hold bytes. We do this by prefixing any variable holding bytes with b_. For instance:

filename = u'/var/tmp/café.txt'
b_filename = to_bytes(filename)
with open(b_filename) as f:

data = f.read()

We do not prefix the text strings instead because we only operate on byte strings at the borders, so there are fewer
variables that need bytes than text.

Bundled six

The third-party python-six library exists to help projects create code that runs on both Python-2 and Python-3. Ansible
includes a version of the library in module_utils so that other modules can use it without requiring that it is installed
on the remote system. To make use of it, import it like this:

from ansible.module_utils import six

: Ansible can also use a system copy of six

Ansible will use a system copy of six if the system copy is a later version than the one Ansible bundles.

Exceptions

In order for code to function on Python-2.6+ and Python-3, use the new exception-catching syntax which uses the as
keyword:

try:
a = 2/0

except ValueError as e:
module.fail_json(msg="Tried to divide by zero: %s" % e)

Do not use the following syntax as it will fail on every version of Python-3:

try:
a = 2/0

except ValueError, e:
module.fail_json(msg="Tried to divide by zero: %s" % e)

Octal numbers

In Python-2.x, octal literals could be specified as 0755. In Python-3, octals must be specified as 0o755.

String formatting

1.7. Developer Information 299

https://pythonhosted.org/six/

Ansible 2.2 Documentation, 2.4

str.format() compatibility

Starting in Python-2.6, strings gained a method called format() to put strings together. However, one commonly
used feature of format() wasn’t added until Python-2.7, so you need to remember not to use it in Ansible code:

Does not work in Python-2.6!
new_string = "Dear {}, Welcome to {}".format(username, location)

Use this instead
new_string = "Dear {0}, Welcome to {1}".format(username, location)

Both of the format strings above map positional arguments of the format()method into the string. However, the first
version doesn’t work in Python-2.6. Always remember to put numbers into the placeholders so the code is compatible
with Python-2.6.

:

Python documentation on format strings

Use percent format with byte strings

In Python-3.x, byte strings do not have a format() method. However, it does have support for the older, percent-
formatting.

b_command_line = b'ansible-playbook --become-user %s -K %s' % (user, playbook_file)

: Percent formatting added in Python-3.5

Percent formatting of byte strings was added back into Python3 in 3.5. This isn’t a problem for us because Python-3.5
is our minimum version. However, if you happen to be testing Ansible code with Python-3.4 or earlier, you will find
that the byte string formatting here won’t work. Upgrade to Python-3.5 to test.

:

Python documentation on percent formatting

Porting Modules to Python 3

Ansible modules are slightly harder to port than normal code from other projects. A lot of mocking has to go into
unit testing an Ansible module so it’s harder to test that your porting has fixed everything or to to make sure that later
commits haven’t regressed the Python-3 support.

Module String Strategy

There are a large number of modules in Ansible. Most of those are maintained by the Ansible community at large, not
by a centralized team. To make life easier on them, it was decided not to break backwards compatibility by mandating
that all strings inside of modules are text and converting between text and bytes at the borders; instead, we’re using a
native string strategy for now.

Native strings refer to the type that Python uses when you specify a bare string literal:

"This is a native string"

300 Chapter 1. About Ansible

https://docs.python.org/2/library/string.html#formatstrings
https://docs.python.org/2/library/stdtypes.html#string-formatting

Ansible 2.2 Documentation, 2.4

In Python-2, these are byte strings. In Python-3 these are text strings. The module_utils shipped with Ansible attempts
to accept native strings as input to its functions and emit native strings as their output. Modules should be coded to
expect bytes on Python-2 and text on Python-3.

Tips, tricks, and idioms to adopt

Python-2.4 Compatible Exception Syntax

Until Ansible-2.4, modules needed to be compatible with Python-2.4 as well. Python-2.4 did not understand the
new exception-catching syntax so we had to write a compatibility function that could work with both Python-2 and
Python-3. You may still see this used in some modules:

from ansible.module_utils.pycompat24 import get_exception

try:
a = 2/0

except ValueError:
e = get_exception()
module.fail_json(msg="Tried to divide by zero: %s" % e)

Unless a change is going to be backported to Ansible-2.3, you should not have to use this in new code.

Python 2.4 octal workaround

Before Ansible-2.4, modules had to be compatible with Python-2.4. Python-2.4 did not understand the new syntax for
octal literals so we used the following workaround to specify octal values:

Can't use 0755 on Python-3 and can't use 0o755 on Python-2.4
EXECUTABLE_PERMS = int('0755', 8)

Unless a change is going to be backported to Ansible-2.3, you should not have to use this in new code.

Porting module_utils code to Python 3

module_utils code is largely like module code. However, some pieces of it are used by the controller as well. Because
of this, it needs to be usable with the controller’s assumptions. This is most notable in the string strategy.

Module_utils String Strategy

Module_utils must use the Native String Strategy. Functions in module_utils receive either text strings or byte strings
and may emit either the same type as they were given or the native string for the Python version they are run on
depending on which makes the most sense for that function. Functions which return strings must document whether
they return text, byte, or native strings. Module-utils functions are therefore often very defensive in nature, converting
from potential text or bytes at the beginning of a function and converting to the native string type at the end.

Python API

1.7. Developer Information 301

Ansible 2.2 Documentation, 2.4

Topics

• Python API

– Python API 2.0

– Python API pre 2.0

* Detailed API Example

Please note that while we make this API available it is not intended for direct consumption, it is here for the support
of the Ansible command line tools. We try not to make breaking changes but we reserve the right to do so at any time
if it makes sense for the Ansible toolset.

The following documentation is provided for those that still want to use the API directly, but be mindful this is not
something the Ansible team supports.

There are several interesting ways to use Ansible from an API perspective. You can use the Ansible python API to
control nodes, you can extend Ansible to respond to various python events, you can write various plugins, and you can
plug in inventory data from external data sources. This document covers the execution and Playbook API at a basic
level.

If you are looking to use Ansible programmatically from something other than Python, trigger events asynchronously,
or have access control and logging demands, take a look at Ansible Tower as it has a very nice REST API that provides
all of these things at a higher level.

Ansible is written in its own API so you have a considerable amount of power across the board. This chapter discusses
the Python API. The Python API is very powerful, and is how the all the ansible CLI tools are implemented. In
version 2.0 the core ansible got rewritten and the API was mostly rewritten.

: Ansible relies on forking processes, as such the API is not thread safe.

Python API 2.0

In 2.0 things get a bit more complicated to start, but you end up with much more discrete and readable classes:

#!/usr/bin/env python

import json
from collections import namedtuple
from ansible.parsing.dataloader import DataLoader
from ansible.vars import VariableManager
from ansible.inventory import Inventory
from ansible.playbook.play import Play
from ansible.executor.task_queue_manager import TaskQueueManager
from ansible.plugins.callback import CallbackBase

class ResultCallback(CallbackBase):
"""A sample callback plugin used for performing an action as results come in

If you want to collect all results into a single object for processing at
the end of the execution, look into utilizing the ``json`` callback plugin
or writing your own custom callback plugin
"""
def v2_runner_on_ok(self, result, **kwargs):

"""Print a json representation of the result

302 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

This method could store the result in an instance attribute for retrieval
→˓later

"""
host = result._host
print json.dumps({host.name: result._result}, indent=4)

Options = namedtuple('Options', ['connection', 'module_path', 'forks', 'become',
→˓'become_method', 'become_user', 'check'])
initialize needed objects
variable_manager = VariableManager()
loader = DataLoader()
options = Options(connection='local', module_path='/path/to/mymodules', forks=100,
→˓become=None, become_method=None, become_user=None, check=False)
passwords = dict(vault_pass='secret')

Instantiate our ResultCallback for handling results as they come in
results_callback = ResultCallback()

create inventory and pass to var manager
inventory = Inventory(loader=loader, variable_manager=variable_manager, host_list=
→˓'localhost')
variable_manager.set_inventory(inventory)

create play with tasks
play_source = dict(

name = "Ansible Play",
hosts = 'localhost',
gather_facts = 'no',
tasks = [

dict(action=dict(module='shell', args='ls'), register='shell_out'),
dict(action=dict(module='debug', args=dict(msg='{{shell_out.stdout}}')))

]
)

play = Play().load(play_source, variable_manager=variable_manager, loader=loader)

actually run it
tqm = None
try:

tqm = TaskQueueManager(
inventory=inventory,
variable_manager=variable_manager,
loader=loader,
options=options,
passwords=passwords,
stdout_callback=results_callback, # Use our custom callback instead of

→˓the ``default`` callback plugin
)

result = tqm.run(play)
finally:

if tqm is not None:
tqm.cleanup()

Python API pre 2.0

It’s pretty simple:

1.7. Developer Information 303

Ansible 2.2 Documentation, 2.4

import ansible.runner

runner = ansible.runner.Runner(
module_name='ping',
module_args='',
pattern='web*',
forks=10

)
datastructure = runner.run()

The run method returns results per host, grouped by whether they could be contacted or not. Return types are module
specific, as expressed in the About Modules documentation.:

{
"dark" : {

"web1.example.com" : "failure message"
},
"contacted" : {

"web2.example.com" : 1
}

}

A module can return any type of JSON data it wants, so Ansible can be used as a framework to rapidly build powerful
applications and scripts.

Detailed API Example

The following script prints out the uptime information for all hosts:

#!/usr/bin/python

import ansible.runner
import sys

construct the ansible runner and execute on all hosts
results = ansible.runner.Runner(

pattern='*', forks=10,
module_name='command', module_args='/usr/bin/uptime',

).run()

if results is None:
print "No hosts found"
sys.exit(1)

print "UP ***********"
for (hostname, result) in results['contacted'].items():

if not 'failed' in result:
print "%s >>> %s" % (hostname, result['stdout'])

print "FAILED *******"
for (hostname, result) in results['contacted'].items():

if 'failed' in result:
print "%s >>> %s" % (hostname, result['msg'])

print "DOWN *********"
for (hostname, result) in results['dark'].items():

304 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

print "%s >>> %s" % (hostname, result)

Advanced programmers may also wish to read the source to ansible itself, for it uses the API (with all available
options) to implement the ansible command line tools (lib/ansible/cli/).

:

Developing Dynamic Inventory Sources Developing dynamic inventory integrations

Developing Modules How to develop modules

Developing Plugins How to develop plugins

Development Mailing List Mailing list for development topics

irc.freenode.net #ansible IRC chat channel

Rebasing a Pull Request

You may find that your pull request (PR) is out-of-date and needs to be rebased. This can happen for several reasons:

• Files modified in your PR are in conflict with changes which have already been merged.

• Your PR is old enough that significant changes to automated test infrastructure have occurred.

Rebasing the branch used to create your PR will resolve both of these issues.

Configuring Your Remotes

Before you can rebase your PR, you need to make sure you have the proper remotes configured. Assuming you cloned
your fork in the usual fashion, the origin remote will point to your fork:

$ git remote -v
origin git@github.com:YOUR_GITHUB_USERNAME/ansible.git (fetch)
origin git@github.com:YOUR_GITHUB_USERNAME/ansible.git (push)

However, you also need to add a remote which points to the upstream repository:

$ git remote add upstream https://github.com/ansible/ansible.git

Which should leave you with the following remotes:

$ git remote -v
origin git@github.com:YOUR_GITHUB_USERNAME/ansible.git (fetch)
origin git@github.com:YOUR_GITHUB_USERNAME/ansible.git (push)
upstream https://github.com/ansible/ansible.git (fetch)
upstream https://github.com/ansible/ansible.git (push)

Checking the status of your branch should show you’re up-to-date with your fork at the origin remote:

$ git status
On branch YOUR_BRANCH
Your branch is up-to-date with 'origin/YOUR_BRANCH'.
nothing to commit, working tree clean

1.7. Developer Information 305

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Rebasing Your Branch

Once you have an upstream remote configured, you can rebase the branch for your PR:

$ git pull --rebase upstream devel

This will replay the changes in your branch on top of the changes made in the upstream devel branch. If there are
merge conflicts, you will be prompted to resolve those before you can continue.

Once you’ve rebased, the status of your branch will have changed:

$ git status
On branch YOUR_BRANCH
Your branch and 'origin/YOUR_BRANCH' have diverged,
and have 4 and 1 different commits each, respectively.

(use "git pull" to merge the remote branch into yours)
nothing to commit, working tree clean

Don’t worry, this is normal after a rebase. You should ignore the git status instructions to use git pull. We’ll
cover what to do next in the following section.

Updating Your Pull Request

Now that you’ve rebased your branch, you need to push your changes to GitHub to update your PR.

Since rebasing re-writes git history, you will need to use a force push:

$ git push --force

Your PR on GitHub has now been updated. This will automatically trigger testing of your changes. You should check
in on the status of your PR after tests have completed to see if further changes are required.

Getting Help Rebasing

For help with rebasing your PR, or other development related questions, join us on our #ansible-devel IRC chat channel
on freenode.net.

Testing Ansible

Topics

• Testing Ansible

– Introduction

– Types of tests

– Testing within GitHub & Shippable

* Organization

* Rerunning a failing CI job

– How to test a PR

306 Chapter 1. About Ansible

https://freenode.net

Ansible 2.2 Documentation, 2.4

* Setup: Checking out a Pull Request

* Testing the Pull Request

– Want to know more about testing?

Introduction

This document describes:

• how Ansible is tested

• how to test Ansible locally

• how to extend the testing capabilities

Types of tests

At a high level we have the following classifications of tests:

compile

• testing_compile

• Test python code against a variety of Python versions.

sanity

• testing_sanity

• Sanity tests are made up of scripts and tools used to perform static code analysis.

• The primary purpose of these tests is to enforce Ansible coding standards and requirements.

integration

• testing_integration

• Functional tests of modules and Ansible core functionality.

units

• testing_units

• Tests directly against individual parts of the code base.

If you’re a developer, one of the most valuable things you can do is look at the GitHub issues list and help fix bugs.
We almost always prioritize bug fixing over feature development, so helping to fix bugs is one of the best things you
can do.

Even if you’re not a developer, helping to test pull requests for bug fixes and features is still immensely valuable.

Testing within GitHub & Shippable

Organization

When Pull Requests (PRs) are created they are tested using Shippable, a Continuous Integration (CI) tool. Results are
shown at the end of every PR.

1.7. Developer Information 307

Ansible 2.2 Documentation, 2.4

When Shippable detects an error and it can be linked back to a file that has been modified in the PR then the relevant
lines will be added as a GitHub comment. For example:

The test `ansible-test sanity --test pep8` failed with the following errors:

lib/ansible/modules/network/foo/bar.py:509:17: E265 block comment should start with '
→˓# '

The test `ansible-test sanity --test validate-modules` failed with the following
→˓errors:
lib/ansible/modules/network/foo/bar.py:0:0: E307 version_added should be 2.4.
→˓Currently 2.3
lib/ansible/modules/network/foo/bar.py:0:0: E316 ANSIBLE_METADATA.metadata_version:
→˓required key not provided @ data['metadata_version']. Got None

From the above example we can see that --test pep8 and --test validate-modules have identified is-
sues. The commands given allow you to run the same tests locally to ensure you’ve fixed the issues without having to
push your changed to GitHub and wait for Shippable, for example:

If you haven’t already got Ansible available, use the local checkout by running:

source hacking/env-setup

Then run the tests detailed in the GitHub comment:

ansible-test sanity --test pep8
ansible-test sanity --test validate-modules

If there isn’t a GitHub comment stating what’s failed you can inspect the results by clicking on the “Details” button
under the “checks have failed” message at the end of the PR.

Rerunning a failing CI job

Occasionally you may find your PR fails due to a reason unrelated to your change. This could happen for several
reasons, including:

• a temporary issue accessing an external resource, such as a yum or git repo

• a timeout creating a virtual machine to run the tests on

If either of these issues appear to be the case, you can rerun the Shippable test by:

• closing and re-opening the PR

• making another change to the PR and pushing to GitHub

If the issue persists, please contact us in #ansible-devel on Freenode IRC.

How to test a PR

If you’re a developer, one of the most valuable things you can do is look at the GitHub issues list and help fix bugs.
We almost always prioritize bug fixing over feature development, so helping to fix bugs is one of the best things you
can do.

Even if you’re not a developer, helping to test pull requests for bug fixes and features is still immensely valuable.

Ideally, code should add tests that prove that the code works. That’s not always possible and tests are not always
comprehensive, especially when a user doesn’t have access to a wide variety of platforms, or is using an API or web

308 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

service. In these cases, live testing against real equipment can be more valuable than automation that runs against
simulated interfaces. In any case, things should always be tested manually the first time as well.

Thankfully, helping to test Ansible is pretty straightforward, assuming you are familiar with how Ansible works.

Setup: Checking out a Pull Request

You can do this by:

• checking out Ansible

• making a test branch off the main branch

• merging a GitHub issue

• testing

• commenting on that particular issue on GitHub

Here’s how:

: Testing source code from GitHub pull requests sent to us does have some inherent risk, as the source code sent
may have mistakes or malicious code that could have a negative impact on your system. We recommend doing all
testing on a virtual machine, whether a cloud instance, or locally. Some users like Vagrant or Docker for this, but
they are optional. It is also useful to have virtual machines of different Linux or other flavors, since some features
(apt vs. yum, for example) are specific to those OS versions.

Create a fresh area to work:

git clone https://github.com/ansible/ansible.git ansible-pr-testing
cd ansible-pr-testing

Next, find the pull request you’d like to test and make note of the line at the top which describes the source and
destination repositories. It will look something like this:

Someuser wants to merge 1 commit into ansible:devel from someuser:feature_branch_name

: Only test ansible:devel

It is important that the PR request target be ansible:devel, as we do not accept pull requests into any other
branch. Dot releases are cherry-picked manually by Ansible staff.

The username and branch at the end are the important parts, which will be turned into git commands as follows:

git checkout -b testing_PRXXXX devel
git pull https://github.com/someuser/ansible.git feature_branch_name

The first command creates and switches to a new branch named testing_PRXXXX, where the XXXX is the actual
issue number associated with the pull request (for example, 1234). This branch is based on the devel branch. The
second command pulls the new code from the users feature branch into the newly created branch.

: If the GitHub user interface shows that the pull request will not merge cleanly, we do not recommend proceeding
if you are not somewhat familiar with git and coding, as you will have to resolve a merge conflict. This is the
responsibility of the original pull request contributor.

1.7. Developer Information 309

Ansible 2.2 Documentation, 2.4

: Some users do not create feature branches, which can cause problems when they have multiple, unrelated commits
in their version of devel. If the source looks like someuser:devel, make sure there is only one commit listed on
the pull request.

The Ansible source includes a script that allows you to use Ansible directly from source without requiring a full
installation that is frequently used by developers on Ansible.

Simply source it (to use the Linux/Unix terminology) to begin using it immediately:

source ./hacking/env-setup

This script modifies the PYTHONPATH environment variables (along with a few other things), which will be temporar-
ily set as long as your shell session is open.

Testing the Pull Request

At this point, you should be ready to begin testing!

Some ideas of what to test are:

• Create a test Playbook with the examples in and check if they function correctly

• Test to see if any Python backtraces returned (that’s a bug)

• Test on different operating systems, or against different library versions

Any potential issues should be added as comments on the pull request (and it’s acceptable to comment if the feature
works as well), remembering to include the output of ansible --version

Example:

Works for me! Tested on `Ansible 2.3.0`. I verified this on CentOS 6.5 and also
→˓Ubuntu 14.04.

If the PR does not resolve the issue, or if you see any failures from the unit/integration tests, just include that output
instead:

This doesn’t work for me.

When I ran this Ubuntu 16.04 it failed with the following:

‘‘‘
some output
StrackTrace
some other output
‘‘‘

Want to know more about testing?

If you’d like to know more about the plans for improving testing Ansible then why not join the Testing Working Group.

310 Chapter 1. About Ansible

https://github.com/ansible/community/blob/master/MEETINGS.md

Ansible 2.2 Documentation, 2.4

Repo Merge

Background

On Tuesday 6th December 2016, the Ansible Core Team re-merged the module repositories back into ansible/ansible
in GitHub. The two module repos will be essentially locked, though they will be kept in place for the existing 2.1 and
2.2 dependencies. Once 2.2 moves out of official support (early 2018), these repositories will be fully readonly for all
branches. Until then, any issues/PRs opened there will be auto-closed with a note to open it on ansible/ansible.

Why Are We Doing This (Again...)?

For those who’ve been using Ansible long enough, you know that originally we started with a single repository. The
original intention of the core vs. extras split was that core would be better supported/tested/etc. Extras would have
been a bit more of a “wild-west” for modules, to allow new modules to make it into the distribution more quickly.
Unfortunately this never really worked out, as well as the following:

1. Many modules in the core repo were also essentially “grand-fathered” in, despite not having a good set of tests
or dedicated maintainers from the community.

2. The time in queue for modules to be merged into extras was not really any different from the time to merge
modules into core.

3. The split introduced a few other problems for contributors such as having to submit multiple related PRs for
modules with tests, or for those which rely on action plugins.

4. git submodules are notoriously complicated, even for contributors with decent git experience. The constant need
to update git submodule pointers for devel and each stable branch can lead to testing surprises and really buys
us nothing in terms of flexibility.

5. Users can already be confused about where to open issues, especially when the problem appears to be with a
module but is actually an action plugin (ie. template) or something more fundamental like includes. Having
everything back in one repo makes it easier to link issues, and you’re always sure to open a bug report in the
right place.

Metadata - Support/Ownership and Module Status

As part of this move, we will be introducing module metadata, which will contain a couple of pieces of information
regarding modules:

1. Support Status: This field indicates who supports the module, whether it’s the core team, the community, the
person who wrote it, or if it is an abandoned module which is not receiving regular updates. The Ansible team
has gone through the list of modules and we have marked about 100 of them as “Core Supported”, meaning a
member of the Ansible core team should be actively fixing bugs on those modules. The vast majority of the rest
will be community supported. This is not really a change from the status quo, this just makes it clearer.

2. Module Status: This field indicates how well supported that module may be. This generally applies to the
maturity of the module’s parameters, however, not necessarily its bug status.

The documentation pages for modules will be updated to reflect the above information as well, so that users can
evaluate the status of a module before committing to using it in playbooks and roles.

Move Issues and PRs to new Repo

A tool has been developed to move a PR from the old repos to ansible/ansible this can be found at prmover tool

1.7. Developer Information 311

https://github.com/ansible/ansible/
https://github.com/ansible/ansible/
https://prmover.pythonanywhere.com/

Ansible 2.2 Documentation, 2.4

Before using prmover please ensure you have a fork of the Ansible repo.

To move issues please use GitHub Issue Mover

If you have any issues with updating your PR please ask for support in #ansible-devel

For support please use #ansible-devel on Freenode IRC

Releases

Topics

• Support for older releases

• Release schedule

• Release methods

• Release feature freeze

Support for older releases

Ansible supports the two most recent major, stable releases. Security- and bug-related fixes may be implemented in
older versions, but this support is not guaranteed.

If you are on a release older than the last two major, stable releases, please see our Porting Guide.

Release schedule

Ansible is on a ‘flexible’ 4 month release schedule. Sometimes the release cycle can be extended if there is a major
change that requires more time (for example, a core rewrite). Recently the main Ansible repo merged the separated
ansible-modules-core and ansible-modules-extras repos, as such modules get released at the same time as the main
Ansible repo.

The major features and bugs fixed in a release should be reflected in the CHANGELOG.md. Minor features and bug
fixes will be shown in the commit history. For example, issue #19057 is reflected only in the commit history. When
a fix orfeature gets added to the devel branch it will be part of the next release. Some bugfixes can be backported to
previous releases and will be part of a minor point release if such a release is deemed necessary.

Sometimes a release candidate can be extended by a few days if a bug fix makes a change that can have far-reaching
consequences, so users have enough time to find any new issues that may stem from this.

Release methods

Ansible normally goes through a ‘release candidate’, issuing an RC1 for a release. If no major bugs are discovered in
the release candidate after 5 business days, we’ll get a final release. Otherwise, fixes will be applied and an RC2 will
be provided for testing. If no bugs are discovered in RC2 after 2 days, the final release will be made, iterating this last
step and incrementing the candidate number as we find major bugs.

312 Chapter 1. About Ansible

https://github-issue-mover.appspot.com/
http://docs.ansible.com/ansible/porting_guide_2.0.html
https://docs.ansible.com/ansible/dev_guide/repomerge.html
https://github.com/ansible/ansible/blob/devel/CHANGELOG.md
https://github.com/ansible/ansible/pull/19057

Ansible 2.2 Documentation, 2.4

Release feature freeze

During the release candidate process, the focus will be on bugfixes that affect the RC, new features will be delayed
while we try to produce a final version. Some bugfixes that are minor or don’t affect the RC will also be postponed
until after the release is finalized.

:

Python API Python API to Playbooks and Ad Hoc Task Execution

Developing Modules How to develop modules

Developing Plugins How to develop plugins

Ansible Tower REST API endpoint and GUI for Ansible, syncs with dynamic inventory

Development Mailing List Mailing list for development topics

irc.freenode.net #ansible IRC chat channel

Committers Guidelines (for people with commit rights to Ansible on GitHub)

These are the guidelines for people with commit access to Ansible. Committers are essentially acting as members of
the Ansible Core team, although not necessarily as an employee of Ansible and Red Hat. Please read the guidelines
before you commit.

These guidelines apply to everyone. At the same time, this ISN’T a process document. So just use good judgement.
You’ve been given commit access because we trust your judgement.

That said, use the trust wisely.

If you abuse the trust and break components and builds, etc., the trust level falls and you may be asked not to commit
or you may lose access to do so.

Features, High Level Design, and Roadmap

As a core team member, you are an integral part of the team that develops the roadmap. Please be engaged, and push
for the features and fixes that you want to see. Also keep in mind that Red Hat, as a company, will commit to certain
features, fixes, APIs, etc. for various releases. Red Hat, the company, and the Ansible team must get these committed
features (etc.) completed and released as scheduled. Obligations to users, the community, and customers must come
first. Because of these commitments, a feature you want to develop yourself many not get into a release if it impacts a
lot of other parts within Ansible.

Any other new features and changes to high level design should go through the proposal process (TBD), to ensure the
community and core team have had a chance to review the idea and approve it. The core team has sole responsibility
for merging new features based on proposals.

Our Workflow on GitHub

As a committer, you may already know this, but our workflow forms a lot of our team policies. Please ensure you’re
aware of the following workflow steps:

• Fork the repository upon which you want to do some work to your own personal repository

• Work on the specific branch upon which you need to commit

• Create a Pull Request back to the Ansible repository and tag the people you would like to review; assign someone
as the primary “owner” of your request

1.7. Developer Information 313

https://ansible.com/ansible-tower
http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

• Adjust code as necessary based on the Comments provided

• Ask someone on the Core Team to do a final review and merge

Addendum to workflow for Committers:

The Core Team is aware that this can be a difficult process at times. Sometimes, the team breaks the rules: Direct
commits, merging their own PRs. This section is a set of guidelines. If you’re changing a comma in a doc, or making a
very minor change, you can use your best judgement. This is another trust thing. The process is critical for any major
change, but for little things or getting something done quickly, use your best judgement and make sure people on the
team are aware of your work.

Roles on Core

• Core Committers: Fine to do PRs for most things, but we should have a timebox. Hanging PRs may merge on
the judgement of these devs.

• Module Owners: Module Owners own specific modules and have indirect commit access via the current module
PR mechanisms.

General Rules

Individuals with direct commit access to ansible/ansible (+core, + extras) are entrusted with powers that allow them
to do a broad variety of things–probably more than we can write down. Rather than rules, treat these as general
guidelines, individuals with this power are expected to use their best judgement.

• Don’t

– Commit directly.

– Merge your own PRs. Someone else should have a chance to review and approve the PR merge. If you
are a Core Committer, you have a small amount of leeway here for very minor changes.

– Forget about alternate environments. Consider the alternatives–yes, people have bad environments, but
they are the ones who need us the most.

– Drag your community team members down. Always discuss the technical merits, but you should never ad-
dress the person’s limitations (you can later go for beers and call them idiots, but not in IRC/Github/etc.).

– Forget about the maintenance burden. Some things are really cool to have, but they might not be worth
shoehorning in if the maintenance burden is too great.

– Break playbooks. Always keep backwards compatibility in mind.

– Forget to keep it simple. Complexity breeds all kinds of problems.

• Do

– Squash, avoid merges whenever possible, use github’s squash commits or cherry pick if needed (bisect
thanks you).

– Be active. Committers who have no activity on the project (through merges, triage, commits, etc.) will
have their permissions suspended.

– Consider backwards compatibility (goes back to “don’t break existing playbooks”).

– Write tests. PRs with tests are looked at with more priority than PRs without tests that should have them
included. While not all changes require tests, be sure to add them for bug fixes or functionality changes.

314 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

– Discuss with other committers, specially when you are unsure of something.

– Document! If your PR is a new feature or a change to behavior, make sure you’ve updated all associated
documentation or have notified the right people to do so. It also helps to add the version of Core against
which this documentation is compatible (to avoid confusion with stable versus devel docs, for backwards
compatibility, etc.).

– Consider scope, sometimes a fix can be generalized

– Keep it simple, then things are maintainable, debuggable and intelligible.

Committers are expected to continue to follow the same community and contribution guidelines followed by the rest
of the Ansible community.

People

Individuals who’ve been asked to become a part of this group have generally been contributing in significant ways to
the Ansible community for some time. Should they agree, they are requested to add their names and GitHub IDs to
this file, in the section below, via a pull request. Doing so indicates that these individuals agree to act in the ways that
their fellow committers trust that they will act.

Name Github ID IRC Nick Other
James Cammarata jimi-c jimi
Brian Coca bcoca bcoca mdyson@cyberdyne.com
Matt Davis nitzmahone nitzmahone
Toshio Kuratomi abadger abadger1999
Jason McKerr mckerrj newtMcKerr
Robyn Bergeron robynbergeron rbergeron
Greg DeKoenigsberg gregdek gregdek
Monty Taylor emonty mordred
Matt Martz sivel sivel
Nate Case qalthos Qalthos
James Tanner jctanner jtanner
Peter Sprygada privateip privateip
Abhijit Menon-Sen amenonsen crab
Michael Scherer mscherer misc
René Moser resmo resmo
David Shrewsbury Shrews Shrews
Sandra Wills docschick docschick
Graham Mainwaring ghjm
Jon Davila defionscode
Chris Houseknecht chouseknecht
Trond Hindenes trondhindenes
Jon Hawkesworth jhawkseworth jhawkseworth
Will Thames wilthames willthames
Ryan Brown ryansb ryansb
Adrian Likins alikins alikins

Ansible Style Guide

Why Use a Style Guide?

Style guides are important because they ensure consistency in the content, look, and feel of a book or a website.

1.7. Developer Information 315

mailto:mdyson@cyberdyne.com

Ansible 2.2 Documentation, 2.4

Remember, a style guide is only useful if it is used, updated, and enforced. Style Guides are useful for engineering-
related documentation, sales and marketing materials, support docs, community contributions, and more.

As changes are made to the overall Ansible site design, be sure to update this style guide with those changes. Or,
should other resources listed below have major revisions, consider including company information here for ease of
reference.

This style guide incorporates current Ansible resources and information so that overall site and documentation consis-
tency can be met.

Resources

Internal resources

• http://docs.ansible.com/

• https://sites.google.com/a/ansibleworks.com/ansible-intranet/

• ??? intranet Engineering doc???

External Resources

• www.apstylebook.com

• www.chicagomanualofstyle.org—home.html

• www.crockford.com—style.html

• orwell.ru—index.htm

• www.sun.com—sun_tech_pub.xml

• webopedia.internet.com

• www.computeruser.com—index.html

Basic Rules

Use Standard American English

Ansible has customers/users all around the globe, but the headquarters is in Durham, NC, in the US. Use Standard
American English rather than other variations of the English language.

Write for a Global Audience

The idea behind global writing is that everything you say should be understandable by those of many different back-
grounds and cultures. References, therefore, should be as universal as possible. Avoid idioms and regionalism and
maintain a neutral tone that cannot be misinterpreted. Avoid attempts at humor.

Follow Naming Conventions

Always follow naming conventions and trademarks. If you aren’t sure how a product should be properly referred to,
ask the Engineering Product Manager of that product line (ansible-core or Tower) for information.

316 Chapter 1. About Ansible

http://docs.ansible.com/
https://sites.google.com/a/ansibleworks.com/ansible-intranet/

Ansible 2.2 Documentation, 2.4

Important Information First

Important information stated at the beginning of a sentence makes it easier to understand.

Unclear: The unwise walking about upon the area near the cliff edge may result in a dangerous fall and
therefore it is recommended that one remains a safe distance to maintain personal safety.

Clearer: Danger! Stay away from cliff.

Sentence Structure

Good sentence structure helps convey information. Try to keep the most important information towards the beginning
of the sentence.

Bad: Furthermore, large volumes of water are also required for the process of extraction.

Better: Extraction also requires large volumes of water.

Avoid padding

When reading a piece of technical writing, the audience does not benefit from elaborate prose. They just need in-
formation on how to perform a task. Avoid using padding, or filler. Don’t use phrases such as, kind of, sort of, and
essentially.

Avoid redundant prepositional phrases

Prepositional phrases, the combination of a preposition with a noun phrase, are among the worst offenders in making
text long and tiresome to read. Often, it is possible to replace an entire phrase with a single word.

Use now instead of at this point in time. Use suddenly instead of all of the sudden.

Avoid verbosity

Write short, succinct sentences. Never say, ”...as has been said before,” ”..each and every,” ”...point in time,” etc.
Avoid ”...in order to,” especially at the beginning of sentences. Every word must contribute meaning to the sentence.
Technical writing is information delivery.

Avoid pomposity

While it is good to have a wide vocabulary, technical writing is not the place for showing off linguistic abilities.
Technical writing is about producing clear, plain instructions for a specific audience.

Action verbs, menus, and commands

We interact with computers in a variety of ways. You can select anything on an application user interface by selecting
it using a keyboard or mouse. It is important to use action verbs and software terminology correctly.

The most frequent verbs used in software are:

• Click

• Double-click

1.7. Developer Information 317

Ansible 2.2 Documentation, 2.4

• Select

• Type

• Press

Use of an action verb in a sentence (bolded words):

1. In the dialog box, click Open.

2. Type a name in the text box.

3. On the keyboard press Enter.

Use of menu actions and commands in a sentence:

1. On the File menu, click Open.

2. Type a name in the User Name field.

3. In the Open dialog box, click Save.

4. On the computer keyboard, press Enter.

5. On the toolbar, click the Open File icon.

Make users aware of where they are in the application. If there is more than one method to perform an action, use the
most common method. Define “what, where, and how” in each step of the task or procedure. Describe menu items for
the current task left to right, top-down.

Voice Style

The essence of the Ansible writing style is short sentences that flow naturally together. Mix up sentence structures.
Vary sentence subjects. Address the reader directly. Ask a question. And when the reader adjusts to the pace of shorter
sentences, write a longer one.

• Write how real people speak...

• ...but try to avoid slang and colloquialisms that might not translate well into other languages.

• Say big things with small words.

• Be direct. Tell the reader exactly what you want them to do.

• Be honest.

• Short sentences show confidence.

• Grammar rules are meant to be bent, but only if the reader knows you are doing this.

• Choose words with fewer syllables for faster reading and better understanding.

• Think of copy as one-on-one conversations rather than as a speech. It’s more difficult to ignore someone who is
speaking to you directly.

• When possible, start task-oriented sentences (those that direct a user to do something) with action words. For
example: Find software... Contact support... Install the media.... and so forth.

Active Voice

Use the active voice (“Start Linuxconf by typing...”) rather than passive (“Linuxconf can be started by typing...”)
whenever possible. Active voice makes for more lively, interesting reading. Also avoid future tense (or using the term
“will”) whenever possible For example, future tense (“The screen will display...”) does not read as well as an active

318 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

voice (“The screen displays”). Remember, the users you are writing for most often refer to the documentation while
they are using the system, not after or in advance of using the system.

Trademark Usage

Why is it important to use the TM, SM, and ® for our registered marks?

Before a trademark is registered with the United States Patent and Trademark Office it is appropriate to use the TM
or SM symbol depending whether the product is for goods or services. It is important to use the TM or SM as it is
notification to the public that Ansible claims rights to the mark even though it has not yet been registered.

Once the trademark is registered, it is appropriate to use the symbol in place of the TM or SM. The symbol designation
must be used in conjunction with the trademark if Ansible is to fully protect its rights. If we don’t protect these marks,
we run the risk of losing them in the way of Aspirin or Trampoline or Escalator.

General Rules:

Trademarks should be used on 1st references on a page or within a section.

Use Ansible Tower® or Ansible®, on first reference when referring to products.

Use “Ansible” alone as the company name, as in “Ansible announced quarterly results,” which is not marked.

Also add the trademark disclaimer. * When using Ansible trademarks in the body of written text, you should use the
following credit line in a prominent place, usually a footnote.

For Registered Trademarks: - [Name of Trademark] is a registered trademark of Ansible, Inc. in the
United States and other countries.

For Unregistered Trademarks (TMs/SMs): - [Name of Trademark] is a trademark of Ansible, Inc. in the
United States and other countries.

For registered and unregistered trademarks: - [Name of Trademark] is a registered trademark and [Name
of Trademark] is a trademark of Ansible, Inc. in the United States and other countries.

Guidelines for the proper use of trademarks:

Always distinguish trademarks from surround text with at least initial capital letters or in all capital letters.

Always use proper trademark form and spelling.

Never use a trademark as a noun. Always use a trademark as an adjective modifying the noun.

Correct: Ansible Tower® system performance is incredible.

Incorrect: Ansible’s performance is incredible.

Never use a trademark as a verb. Trademarks are products or services, never actions.

Correct: “Orchestrate your entire network using Ansible Tower®.”

Incorrect: “Ansible your entire network.”

Never modify a trademark to a plural form. Instead, change the generic word from the singular to the plural.

Correct: “Corporate demand for Ansible Tower® configuration software is surging.”

Incorrect: “Corporate demand for Ansible is surging.”

1.7. Developer Information 319

Ansible 2.2 Documentation, 2.4

Never modify a trademark from its possessive form, or make a trademark possessive. Always use it in the form it has
been registered.

Never translate a trademark into another language.

Never use trademarks to coin new words or names.

Never use trademarks to create a play on words.

Never alter a trademark in any way including through unapproved fonts or visual identifiers.

Never abbreviate or use any Ansible trademarks as an acronym.

The importance of Ansible trademarks

The Ansible trademark and the “A” logo in a shaded circle are our most valuable assets. The value of these trademarks
encompass the Ansible Brand. Effective trademark use is more than just a name, it defines the level of quality the
customer will receive and it ties a product or service to a corporate image. A trademark may serve as the basis for
many of our everyday decisions and choices. The Ansible Brand is about how we treat customers and each other. In
order to continue to build a stronger more valuable Brand we must use it in a clear and consistent manner.

The mark consists of the letter “A” in a shaded circle. As of 5/11/15, this was a pending trademark (registration in
process).

Common Ansible Trademarks

• Ansible®

• Ansible Tower®

Other Common Trademarks and Resource Sites:

• Linux is a registered trademark of Linus Torvalds.

• UNIX® is a registered trademark of The Open Group.

• Microsoft, Windows, Vista, XP, and NT are registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. http://members.microsoft.com—en-us.mspx

• Apple, Mac, Mac OS, Macintosh, Pages and TrueType are either registered trademarks or trademarks of Apple
Computer, Inc. in the United States and/or other countries. http://www.apple.com—appletmlist.html

• Adobe, Acrobat, GoLive, InDesign, Illustrator, PostScript , PhotoShop and the OpenType logo are either reg-
istered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.
htto:// www.adobe.com—trade.html

• Macromedia and Macromedia Flash are trademarks of Macromedia, Inc. http://www.adobe.
com—trademarkguideline.html

• IBM is a registered trademark of International Business Machines Corporation. http://www.ibm.
com—copytrade.shtml

• Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, Intel Core, Intel Inside, Intel Inside logo,
Itanium, Itanium Inside, Pentium, Pentium Inside,VTune, Xeon, and Xeon Inside are trademarks or reg-
istered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. http:
//www.intel.com—tradmarx.htm

320 Chapter 1. About Ansible

http://members.microsoft.com
http://www.apple.com
http://www.adobe.com
http://www.adobe.com
http://www.ibm.com
http://www.ibm.com
http://www.intel.com
http://www.intel.com

Ansible 2.2 Documentation, 2.4

Grammar and Punctuation

Common Styles and Usage, and Common Mistakes

Ansible

• Write “Ansible.” Not “Ansible, Inc.” or “AnsibleWorks The only exceptions to this rule are when we’re writing
legal or financial statements.

• Never use the logotype by itself in body text. Always keep the same font you are using the rest of the sentence.

• A company is singular in the US. In other words, Ansible is an “it,” not a “they.”

Capitalization

If it’s not a real product, service, or department at Ansible, don’t capitalize it. Not even if it seems important. Capitalize
only the first letter of the first word in headlines.

Colon

A colon is generally used before a list or series: - The Triangle Area consists of three cities: Raleigh, Durham, and
Chapel Hill.

But not if the list is a complement or object of an element in the sentence: - Before going on vacation, be sure to (1)
set the alarm, (2) cancel the newspaper, and (3) ask a neighbor to collect your mail.

Use a colon after “as follows” and “the following” if the related list comes immediately after: wedge The steps for
changing directories are as follows:

1. Open a terminal.

2. Type cd...

Use a colon to introduce a bullet list (or dash, or icon/symbol of your choice):

In the Properties dialog box, you’ll find the following entries:

• Connection name

• Count

• Cost per item

Commas

Use serial commas, the comma before the “and” in a series of three or more items:

• “Item 1, item 2, and item 3.”

It’s easier to read that way and helps avoid confusion. The primary exception to this you will see is in PR, where it is
traditional not to use serial commas because it is often the style of journalists.

Commas are always important, considering the vast difference in meanings of the following two statements.

• Let’s eat, Grandma

• Let’s eat Grandma.

1.7. Developer Information 321

Ansible 2.2 Documentation, 2.4

Correct punctation could save Grandma’s life.

If that does not convince you, maybe this will:

Contractions

Do not use contractions in Ansible documents.

Em dashes

When possible, use em-dashes with no space on either side. When full em-dashes aren’t available, use double-dashes
with no spaces on either side–like this.

A pair of em dashes can be used in place of commas to enhance readability. Note, however, that dashes are always
more emphatic than commas.

322 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

A pair of em dashes can replace a pair of parentheses. Dashes are considered less formal than parentheses; they are
also more intrusive. If you want to draw attention to the parenthetical content, use dashes. If you want to include the
parenthetical content more subtly, use parentheses.

: When dashes are used in place of parentheses, surrounding punctuation should be omitted. Compare the following
examples.

Upon discovering the errors (all 124 of them), the publisher immediately recalled the
→˓books.

Upon discovering the errors--all 124 of them--the publisher immediately recalled the
→˓books.

When used in place of parentheses at the end of a sentence, only a single dash is used.

After three weeks on set, the cast was fed up with his direction (or, rather, lack of
→˓direction).

After three weeks on set, the cast was fed up with his direction--or, rather, lack of
→˓direction.

Exclamation points (!)

Do not use them at the end of sentences. An exclamation point can be used when referring to a command, such as the
bang (!) command.

Gender References

Do not use gender-specific pronouns in documentation. It is far less awkward to read a sentence that uses “they” and
“their” rather than “he/she” and “his/hers.”

It is fine to use “you” when giving instructions and “the user,” “new users,” etc. in more general explanations.

Never use “one” in place of “you” when writing technical documentation. Using “one” is far too formal.

Never use “we” when writing. “We” aren’t doing anything on the user side. Ansible’s products are doing the work as
requested by the user.

Hyphen

The hyphen’s primary function is the formation of certain compound terms. Do not use a hyphen unless it serves a
purpose. If a compound adjective cannot be misread or, as with many psychological terms, its meaning is established,
a hyphen is not necessary.

Use hyphens to avoid ambiguity or confusion:

a little-used car
a little used-car

cross complaint
cross-complaint

high-school girl

1.7. Developer Information 323

Ansible 2.2 Documentation, 2.4

high schoolgirl

fine-tooth comb (most people do not comb their teeth)

third-world war
third world war

In professionally printed material (particularly books, magazines, and newspapers), the hyphen is used to divide words
between the end of one line and the beginning of the next. This allows for an evenly aligned right margin without highly
variable (and distracting) word spacing.

324 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Lists

Keep the structure of bulleted lists equivalent and consistent. If one bullet is a verb phrase, they should all be verb
phrases. If one is a complete sentence, they should all be complete sentences, etc.

Capitalize the first word of each bullet. Unless it is obvious that it is just a list of items, such as a list of items like: *
computer * monitor * keyboard * mouse

When the bulleted list appears within the context of other copy, (unless it’s a straight list like the previous example)
add periods, even if the bullets are sentence fragments. Part of the reason behind this is that each bullet is said to
complete the original sentence.

In some cases where the bullets are appearing independently, such as in a poster or a homepage promotion, they do
not need periods.

When giving instructional steps, use numbered lists instead of bulleted lists.

Months and States

Abbreviate months and states according to AP. Months are only abbreviated if they are used in conjunction with a day.
Example: “The President visited in January 1999.” or “The President visited Jan. 12.”

Months: Jan., Feb., March, April, May, June, July, Aug., Sept., Nov., Dec.

States: Ala., Ariz., Ark., Calif., Colo., Conn., Del., Fla., Ga., Ill., Ind., Kan., Ky., La., Md., Mass., Mich., Minn.,
Miss., Mo., Mont., Neb., Nev., NH, NJ, NM, NY, NC, ND, Okla., Ore., Pa., RI, SC, SD, Tenn., Vt., Va., Wash., W.Va.,
Wis., Wyo.

Numbers

Numbers between one and nine are written out. 10 and above are numerals. The exception to this is writing “4 million”
or “4 GB.” It’s also acceptable to use numerals in tables and charts.

Phone Numbers

Phone number style: 1 (919) 555-0123 x002 and 1 888-GOTTEXT

Quotations (Using Quotation Marks and Writing Quotes)

“Place the punctuation inside the quotes,” the editor said.

Except in rare instances, use only “said” or “says” because anything else just gets in the way of the quote itself, and
also tends to editorialize.

Place the name first right after the quote: “I like to write first-person because I like to become the character I’m
writing,” Wally Lamb said.

Not: “I like to write first-person because I like to become the character I’m writing,” said Wally Lamb.

Semicolon

Use a semicolon to separate items in a series if the items contain commas:

1.7. Developer Information 325

Ansible 2.2 Documentation, 2.4

• Everyday I have coffee, toast, and fruit for breakfast; a salad for lunch; and a peanut butter sandwich, cookies,
ice cream, and chocolate cake for dinner.

Use a semicolon before a conjunctive adverb (however, therefore, otherwise, namely, for example, etc.): - I think;
therefore, I am.

Spacing after sentences

Use only a single space after a sentence.

Time

• Time of day is written as “4 p.m.”

Spelling - Word Usage - Common Words and Phrases to Use and Avoid

Acronyms

Always uppercase. An acronym is a word formed from the initial letters of a name, such as ROM for Read-only
memory, SaaS for Software as a Service, or by combining initial letters or part of a series of words, such as LILO for
LInux LOader.

Spell out the acronym before using it in alone text, such as “The Embedded DevKit (EDK)...”

Applications

When used as a proper name, use the capitalization of the product, such as GNUPro, Source-Navigator, and Ansible
Tower. When used as a command, use lowercase as appropriate, such as “To start GCC, type gcc.”

: “vi” is always lowercase.

As

This is often used to mean “because”, but has other connotations, for example, parallel or simultaneous actions. If you
mean “because”, say “because”.

Asks for

Use “requests” instead.

Assure/Ensure/Insure

Assure implies a sort of mental comfort. As in “I assured my husband that I would eventually bring home beer.”

Ensure means “to make sure.”

Insure relates to monetary insurance.

326 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Back up

This is a verb. You “back up” files; you do not “backup” files.

Backup

This is a noun. You create “backup” files; you do not create “back up” files.

Backward

Correct. Avoid using backwards unless you are stating that something has “backwards compatibility.”

Backwards compatibility

Correct as is.

By way of

Use “using” instead.

Can/May

Use “can” to describe actions or conditions that are possible. Use “may” only to describe situations where permission
is being given. If either “can,” “could,” or “may” apply, use “can” because it’s less tentative.

CD or cd

When referring to a compact disk, use CD, such as “Insert the CD into the CD-ROM drive.” When referring to the
change directory command, use cd.

CD-ROM

Correct. Do not use “cdrom,” “CD-Rom,” “CDROM,” “cd-rom” or any other variation. When referring to the drive,
use CD-ROM drive, such as “Insert the CD into the CD-ROM drive.” The plural is “CD-ROMs.”

Command line

Correct. Do not use “command-line” or “commandline.”

Use to describes where to place options for a command, but not where to type the command. Use “shell prompt”
instead to describe where to type commands. The line on the display screen where a command is expected. Generally,
the command line is the line that contains the most recently displayed command prompt.

1.7. Developer Information 327

Ansible 2.2 Documentation, 2.4

Daylight saving time (DST)

Correct. Do not use daylight savings time. Daylight Saving Time (DST) is often misspelled “Daylight Savings”,
with an “s” at the end. Other common variations are “Summer Time”and “Daylight-Saving Time”. (http://www.
timeanddate.com/time/dst/daylight-savings-time.html)

Download

Correct. Do not use “down load” or “down-load.”

e.g.

Spell it out: “For example.”

Failover

When used as a noun, a failover is a backup operation that automatically switches to a standby database, server or
network if the primary system fails or is temporarily shut down for servicing. Failover is an important fault tolerance
function of mission-critical systems that rely on constant accessibility. Failover automatically and transparently to the
user redirects requests from the failed or down system to the backup system that mimics the operations of the primary
system.

Fail over

When used as a verb, fail over is two words since there can be different tenses such as failed over.

Fewer

Fewer is used with plural nouns. Think things you could count. Time, money, distance, and weight are often listed as
exceptions to the traditional “can you count it” rule, often thought of a singular amounts (the work will take less than
5 hours, for example).

File name

Correct. Do not use “filename.”

File system

Correct. Do not use “filesystem.” The system that an operating system or program uses to organize and keep track of
files. For example, a hierarchical file system is one that uses directories to organize files into a tree structure. Although
the operating system provides its own file management system, you can buy separate file management systems. These
systems interact smoothly with the operating system but provide more features, such as improved backup procedures
and stricter file protection.

328 Chapter 1. About Ansible

http://www.timeanddate.com/time/dst/daylight-savings-time.html
http://www.timeanddate.com/time/dst/daylight-savings-time.html

Ansible 2.2 Documentation, 2.4

For instance

For example,” instead.

For further/additional/whatever information

Use “For more information”

For this reason

Use “therefore”.

Forward

Correct. Avoid using “forwards.”

Gigabyte (GB)

2 to the 30th power (1,073,741,824) bytes. One gigabyte is equal to 1,024 megabytes. Gigabyte is often abbreviated
as G or GB.

Got

Avoid. Use “must” instead.

High-availability

Correct. Do not use “high availability.”

Highly available

Correct. Do not use highly-available.”

Hostname

Correct. Do not use host name.

i.e.

Spell it out: “That is.”

Installer Avoid. Use “installation program” instead.

1.7. Developer Information 329

Ansible 2.2 Documentation, 2.4

It’s and its

“It’s” is a contraction for “it is;” use “it is” instead of “it’s.” Use “its” as a possessive pronoun (for example, “the store
is known for its low prices”).

Less

Less is used with singular nouns. For example “View less details” wouldn’t be correct but “View less detail” works.
Use fewer when you have plural nouns (things you can count).

Linux

Correct. Do not use “LINUX” or “linux” unless referring to a command, such as “To start Linux, type linux.” Linux
is a registered trademark of Linus Torvalds.

Login

A noun used to refer to the login prompt, such as “At the login prompt, enter your username.”

Log in

A verb used to refer to the act of logging in. Do not use “login,” “loggin,” “logon,” and other variants. For example,
“When starting your computer, you are requested to log in...”

Log on

To make a computer system or network recognize you so that you can begin a computer session. Most personal
computers have no log-on procedure – you just turn the machine on and begin working. For larger systems and
networks, however, you usually need to enter a username and password before the computer system will allow you to
execute programs.

Lots of

Use “Several” or something equivalent instead.

Make sure

This means “be careful to remember, attend to, or find out something.” For example, ”...make sure that the rhedk group
is listed in the output.” Try to use verify or ensure instead.

Manual/man page

Correct. Two words. Do not use “manpage”

330 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

MB

1. When spelled MB, short for megabyte (1,000,000 or 1,048,576 bytes, depending on the context).

2. When spelled Mb, short for megabit.

MBps

Short for megabytes per second, a measure of data transfer speed. Mass storage devices are generally measured in
MBps.

MySQL

Common open source database server and client package. Do not use “MYSQL” or “mySQL.”

Need to

Avoid. Use “must” instead.

Read-only

Correct. Use when referring to the access permissions of files or directories.

Real time/real-time

Depends. If used as a noun, it is the actual time during which something takes place. For example, “The computer may
partly analyze the data in real time (as it comes in) – R. H. March.” If used as an adjective, “real-time” is appropriate.
For example, “XEmacs is a self-documenting, customizable, extensible, real-time display editor.”

Refer to

Use to indicate a reference (within a manual or website) or a cross-reference (to another manual or documentation
source).

See

Don’t use. Use “Refer to” instead.

Since

This is often used to mean “because”, but “since” has connotations of time, so be careful. If you mean “because”, say
“because”.

Tells

Use “Instructs” instead.

1.7. Developer Information 331

Ansible 2.2 Documentation, 2.4

That/which

“That” introduces a restrictive clause-a clause that must be there for the sentence to make sense. A restrictive clause
often defines the noun or phrase preceding it. “Which” introduces a non-restrictive, parenthetical clause-a clause that
could be omitted without affecting the meaning of the sentence. For example: The car was travelling at a speed that
would endanger lives. The car, which was traveling at a speed that would endanger lives, swerved onto the sidewalk.
Use “who” or “whom,” rather than “that” or “which,” when referring to a person.

Then/than

“Then” refers to a time in the past or the next step in a sequence. “Than” is used for comparisons.

Third-party

Correct. Do not use “third party”.

Troubleshoot

Correct. Do not use “trouble shoot” or “trouble-shoot.” To isolate the source of a problem and fix it. In the case of
computer systems, the term troubleshoot is usually used when the problem is suspected to be hardware -related. If the
problem is known to be in software, the term debug is more commonly used.

332 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

UK

Correst as is, no periods.

UNIX®

Correct. Do not use “Unix” or “unix.” UNIX® is a registered trademark of The Open Group.

Unset

Don’t use. Use Clear.

US

Correst as is, no periods.

User

When referring to the reader, use “you” instead of “user.” For example, “The user must...” is incorrect. Use “You
must...” instead. If referring to more than one user, calling the collection “users” is acceptable, such as “Other users
may wish to access your database.”

Username

Correct. Do not use “user name.”

View

When using as a reference (“View the documentation available online.”), do not use View. Use “Refer to” instead.

Within

Don’t use to refer to a file that exists in a directory. Use “In”.

World Wide Web

Correct. Capitalize each word. Abbreviate as “WWW” or “Web.”

Webpage

Correct. Do not use “web page” or “Web page.”

1.7. Developer Information 333

Ansible 2.2 Documentation, 2.4

Web server

Correct. Do not use “webserver”. For example, “The Apache HTTP Server is the default Web server...”

Website

Correct. Do not use “web site” or “Web site.” For example, “The Ansible website contains ...”

Who/whom

Use the pronoun “who” as a subject. Use the pronoun “whom” as a direct object, an indirect object, or the object of a
preposition. For example: Who owns this? To whom does this belong?

Will

Do not use future tense unless it is absolutely necessary. For instance, do not use the sentence, “The next section will
describe the process in more detail.” Instead, use the sentence, “The next section describes the process in more detail.”

Wish

Use “need” instead of “desire” and “wish.” Use “want” when the reader’s actions are optional (that is, they may not
“need” something but may still “want” something).

x86

Correct. Do not capitalize the “x.”

x86_64

Do not use. Do not use “Hammer”. Always use “AMD64 and Intel® EM64T” when referring to this architecture.

You

Correct. Do not use “I,” “he,” or “she.”

You may

Try to avoid using this. For example, “you may” can be eliminated from this sentence “You may double-click on the
desktop...”

334 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Ansible Tower

Ansible Tower (formerly ‘AWX’) is a web-based solution that makes Ansible even more easy to use for IT teams of
all kinds. It’s designed to be the hub for all of your automation tasks.

Tower allows you to control access to who can access what, even allowing sharing of SSH credentials without someone
being able to transfer those credentials. Inventory can be graphically managed or synced with a wide variety of cloud
sources. It logs all of your jobs, integrates well with LDAP, and has an amazing browsable REST API. Command
line tools are available for easy integration with Jenkins as well. Provisioning callbacks provide great support for
autoscaling topologies.

Find out more about Tower features and how to download it on the Ansible Tower webpage. Tower is free for usage for
up to 10 nodes, and comes bundled with amazing support from Ansible, Inc. As you would expect, Tower is installed
using Ansible playbooks!

Community Information & Contributing

Ansible is an open source project designed to bring together administrators and developers of all kinds to collaborate
on building IT automation solutions that work well for them.

Should you wish to get more involved – whether in terms of just asking a question, helping other users, introducing
new people to Ansible, or helping with the software or documentation, we welcome your contributions to the project.

Topics

• Community Information & Contributing

– Ansible Users

* I’ve Got A Question

* I’d Like To Keep Up With Release Announcements

* I’d Like To Help Share and Promote Ansible

* I’d Like To Help Ansible Move Faster

* I’d Like To Report A Bug

* I’d Like To Help With Documentation

– For Current and Prospective Developers

* I’d Like To Learn How To Develop on Ansible

* Contributing Code (Features or Bugfixes)

– Other Topics

* Ansible Staff

* Mailing List Information

* IRC Meetings

* Release Numbering

* Tower Support Questions

* IRC Channel

1.8. Ansible Tower 335

https://ansible.com/tower
https://ansible.com/tower

Ansible 2.2 Documentation, 2.4

* Notes on Priority Flags

– Community Code of Conduct

* Anti-harassment policy

* Policy violations

– Contributors License Agreement

Ansible Users

I’ve Got A Question

We’re happy to help!

Ansible questions are best asked on the Ansible Google Group Mailing List.

This is a very large high-traffic list for answering questions and sharing tips and tricks. Anyone can join, and email
delivery is optional if you just want to read the group online. To cut down on spam, your first post is moderated,
though posts are approved quickly.

Please be sure to share any relevant commands you ran, output, and detail, indicate the version of Ansible you are
using when asking a question.

Where needed, link to gists or GitHub repos to show examples, rather than sending attachments to the list.

We recommend using Google search to see if a topic has been answered recently, but comments found in older threads
may no longer apply, depending on the topic.

Before you post, be sure you are running the latest stable version of Ansible. You can check this by comparing the
output of ansible --version with the version indicated on PyPi.

Alternatively, you can also join our IRC channel - #ansible on irc.freenode.net. It’s a very high traffic channel as
well, if you don’t get an answer you like, please stop by our mailing list, which is more likely to get attention of core
developers since it’s asynchronous.

I’d Like To Keep Up With Release Announcements

Release announcements are posted to ansible-project, though if you don’t want to keep up with the very active list,
you can join the Ansible Announce Mailing List.

This is a low-traffic read-only list, where we’ll share release announcements and occasionally links to major Ansible
Events around the world.

I’d Like To Help Share and Promote Ansible

You can help share Ansible with others by telling friends and colleagues, writing a blog post, or presenting at user
groups (like DevOps groups or the local LUG).

You are also welcome to share slides on speakerdeck, sign up for a free account and tag it “Ansible”. On Twitter, you
can also share things with #ansible and may wish to follow us.

336 Chapter 1. About Ansible

http://groups.google.com/group/ansible-project
https://pypi.python.org/pypi/ansible
http://groups.google.com/group/ansible-announce
https://twitter.com/ansible

Ansible 2.2 Documentation, 2.4

I’d Like To Help Ansible Move Faster

If you’re a developer, one of the most valuable things you can do is look at the GitHub issues list and help fix bugs.
We almost always prioritize bug fixing over feature development, so clearing bugs out of the way is one of the best
things you can do.

If you’re not a developer, helping test pull requests for bug fixes and features is still immensely valuable. You can
do this by checking out ansible, making a test branch off the main one, merging a GitHub issue, testing, and then
commenting on that particular issue on GitHub.

I’d Like To Report A Bug

Ansible practices responsible disclosure - if this is a security related bug, email security@ansible.com instead of filing
a ticket or posting to the Google Group and you will receive a prompt response.

Ansible bugs should be reported to github.com/ansible/ansible after signing up for a free GitHub account. Before
reporting a bug, please use the bug/issue search to see if the issue has already been reported. This is listed on the
bottom of the docs page for any module.

Knowing your ansible version and the exact commands you are running, and what you expect, saves time and helps
us help everyone with their issues more quickly.

Do not use the issue tracker for “how do I do this” type questions. These are great candidates for IRC or the mailing
list instead where things are likely to be more of a discussion.

To be respectful of reviewers’ time and allow us to help everyone efficiently, please provide minimal well-reduced
and well-commented examples versus sharing your entire production playbook. Include playbook snippets and output
where possible.

When sharing YAML in playbooks, formatting can be preserved by using code blocks.

For multiple-file content, we encourage use of gist.github.com. Online pastebin content can expire, so it’s nice to have
things around for a longer term if they are referenced in a ticket.

If you are not sure if something is a bug yet, you are welcome to ask about something on the mailing list or IRC first.

As we are a very high volume project, if you determine that you do have a bug, please be sure to open the issue yourself
to ensure we have a record of it. Don’t rely on someone else in the community to file the bug report for you.

It may take some time to get to your report, see our information about priority flags below.

I’d Like To Help With Documentation

Ansible documentation is a community project too!

If you would like to help with the documentation, whether correcting a typo or improving a section, or maybe even
documenting a new feature, submit a GitHub pull request to the code that lives in the docsite/rst subdirectory of
the project for most pages, and there is an “Edit on GitHub” link up on those.

Module documentation is generated from a DOCUMENTATION structure embedded in the source code of each mod-
ule, which is in /lib/ansible/modules/.

Aside from modules, the main docs are in restructured text format.

If you aren’t comfortable with restructured text, you can also open a ticket on GitHub about any errors you spot or
sections you would like to see added. For more information on creating pull requests, please refer to the github help
guide.

1.9. Community Information & Contributing 337

mailto:security@ansible.com
https://github.com/ansible/ansible
https://help.github.com/articles/creating-and-highlighting-code-blocks/
https://github.com/ansible/ansible/tree/devel/lib/ansible/modules/
https://help.github.com/articles/using-pull-requests
https://help.github.com/articles/using-pull-requests

Ansible 2.2 Documentation, 2.4

For Current and Prospective Developers

I’d Like To Learn How To Develop on Ansible

If you’re new to Ansible and would like to figure out how to work on things, stop by the ansible-devel mailing list and
say hi, and we can hook you up.

A great way to get started would be reading over some of the development documentation on the module site, and then
finding a bug to fix or small feature to add.

Modules are some of the easiest places to get started.

Contributing Code (Features or Bugfixes)

The Ansible project keeps its source on GitHub at github.com/ansible/ansible.

The project takes contributions through github pull requests.

It is usually a good idea to join the ansible-devel list to discuss any large features prior to submission, and this especially
helps in avoiding duplicate work or efforts where we decide, upon seeing a pull request for the first time, that revisions
are needed. (This is not usually needed for module development, but can be nice for large changes).

Note that we do keep Ansible to a particular aesthetic, so if you are unclear about whether a feature is a good fit or
not, having the discussion on the development list is often a lot easier than having to modify a pull request later.

New module developers should read through developing modules for helpful pointers and information about running
adhoc tests testing modules.

When submitting patches, be sure to run the unit tests first make tests and always use, these are the same basic
tests that will automatically run on Shippable when creating the PR. There are more in depth tests in the tests/
integration directory, classified as destructive and non_destructive, run these if they pertain to your modification.
They are set up with tags so you can run subsets, some of the tests require cloud credentials and will only run if they
are provided. When adding new features or fixing bugs it would be nice to add new tests to avoid regressions. For
more information about testing see test/README.md.

In order to keep the history clean and better audit incoming code, we will require resubmission of pull requests that
contain merge commits. Use git pull --rebase (rather than git pull) and git rebase (rather than git
merge). Also be sure to use topic branches to keep your additions on different branches, such that they won’t pick up
stray commits later.

If you make a mistake you do not need to close your PR. Instead, create a clean branch locally and then push to GitHub
with --force to overwrite the existing branch (permissible in this case as no one else should be using that branch as
reference). Code comments won’t be lost, they just won’t be attached to the existing branch.

We’ll then review your contributions and engage with you about questions and so on.

Because we have a very large and active community it may take awhile to get your contributions in! See the notes
about priorities in a later section for understanding our work queue. Be patient, your request might not get merged
right away, we also try to keep the devel branch more or less usable so we like to examine Pull requests carefully,
which takes time.

Patches should always be made against the devel branch.

Keep in mind that small and focused requests are easier to examine and accept, having example cases also help us
understand the utility of a bug fix or a new feature.

Contributions can be for new features like modules, or to fix bugs you or others have found. If you are interested in
writing new modules to be included in the core Ansible distribution, please refer to the module development docu-
mentation.

338 Chapter 1. About Ansible

https://github.com/ansible/ansible
https://help.github.com/articles/using-pull-requests
http://docs.ansible.com/ansible/dev_guide/developing_modules.html
http://docs.ansible.com/ansible/dev_guide/developing_modules.html#testing-modules
https://github.com/ansible/ansible/blob/devel/test/README.md
http://docs.ansible.com/developing_modules.html
http://docs.ansible.com/developing_modules.html

Ansible 2.2 Documentation, 2.4

Ansible’s aesthetic encourages simple, readable code and consistent, conservatively extending, backwards-compatible
improvements. When contributing code to Ansible, please observe the following guidelines:

• Code developed for Ansible needs to support Python2-2.6 or higher and Python3-3.5 or higher.

• Use a 4-space indent, not tabs.

• We do not enforce 80 column lines; up to 160 columns are acceptable.

• We do not accept ‘style only’ pull requests unless the code is nearly unreadable.

• We are “PEP8ish”, but not strictly compliant.

You can also contribute by testing and revising other requests, especially if it is one you are interested in using. Please
keep your comments clear and to the point, courteous and constructive, tickets are not a good place to start discussions
(ansible-devel and IRC exist for this).

Tip: To easily run from a checkout, source ./hacking/env-setup and that’s it – no install required. You’re now
live! For more information see hacking/README.md.

Other Topics

Ansible Staff

Ansible, Inc is a company supporting Ansible and building additional solutions based on Ansible. We also do services
and support for those that are interested. We also offer an enterprise web front end to Ansible (see Tower below).

Our most important task however is enabling all the great things that happen in the Ansible community, including
organizing software releases of Ansible. For more information about any of these things, contact info@ansible.com

On IRC, you can find us as jimi_c, abadger1999, Tybstar, bcoca, and others. On the mailing list, we post with an
@ansible.com address.

Mailing List Information

Ansible has several mailing lists. Your first post to the mailing list will be moderated (to reduce spam), so please allow
a day or less for your first post.

Ansible Project List is for sharing Ansible Tips, answering questions, and general user discussion.

Ansible Development List is for learning how to develop on Ansible, asking about prospective feature design, or
discussions about extending ansible or features in progress.

Ansible Announce list is a read-only list that shares information about new releases of Ansible, and also rare infrequent
event information, such as announcements about an AnsibleFest coming up, which is our official conference series.

Ansible Lockdown List is for all things related to Ansible Lockdown projects, including DISA STIG automation and
CIS Benchmarks.

To subscribe to a group from a non-google account, you can send an email to the subscription address requesting the
subscription. For example: ansible-devel+subscribe@googlegroups.com

IRC Meetings

The Ansible community holds regular IRC meetings on various topics, and anyone who is interested is invited to
participate. For more information about Ansible meetings, consult the meeting schedule and agenda page.

1.9. Community Information & Contributing 339

https://github.com/ansible/ansible/blob/devel/hacking/README.md
mailto:info@ansible.com
https://groups.google.com/forum/#!forum/ansible-project
https://groups.google.com/forum/#!forum/ansible-devel
https://groups.google.com/forum/#!forum/ansible-announce
https://groups.google.com/forum/#!forum/ansible-lockdown
mailto:ansible-devel+subscribe@googlegroups.com
https://github.com/ansible/community/blob/master/MEETINGS.md

Ansible 2.2 Documentation, 2.4

Release Numbering

Releases ending in ”.0” are major releases and this is where all new features land. Releases ending in another integer,
like “0.X.1” and “0.X.2” are dot releases, and these are only going to contain bugfixes.

Typically we don’t do dot releases for minor bugfixes (reserving these for larger items), but may occasionally decide
to cut dot releases containing a large number of smaller fixes if it’s still a fairly long time before the next release comes
out.

Releases are also given code names based on Van Halen songs, that no one really uses.

Tower Support Questions

Ansible Tower is a UI, Server, and REST endpoint for Ansible, produced by Ansible, Inc.

If you have a question about Tower, visit Red Hat support rather than using the IRC channel or the general project
mailing list.

IRC Channel

Ansible has several IRC channels on Freenode (irc.freenode.net):

• #ansible - For general use questions and support.

• #ansible-devel - For discussions on developer topics and code related to features/bugs.

• #ansible-meeting - For public community meetings. We will generally announce these on one or more of the
above mailing lists. See the meeting schedule and agenda page

• #ansible-notices - Mostly bot output from things like Github, etc.

Notes on Priority Flags

Ansible was one of the top 5 projects with the most OSS contributors on GitHub in 2013, and has over 1400 contribu-
tors to the project to date, not to mention a very large user community that has downloaded the application well over
a million times.

As a result, we have a LOT of incoming activity to process.

In the interest of transparency, we’re telling you how we sort incoming requests.

In our bug tracker you’ll notice some labels - P1, P2, P3, P4, and P5. These are our internal priority orders that we use
to sort tickets.

With some exceptions for easy merges (like documentation typos for instance), we’re going to spend most of our time
working on P1 and P2 items first, including pull requests. These usually relate to important bugs or features affecting
large segments of the userbase. So if you see something categorized “P3 or P4”, and it’s not appearing to get a lot of
immediate attention, this is why.

These labels don’t really have definition - they are a simple ordering. However something affecting a major module
(yum, apt, etc) is likely to be prioritized higher than a module affecting a smaller number of users.

Since we place a strong emphasis on testing and code review, it may take a few months for a minor feature to get
merged.

Don’t worry though – we’ll also take periodic sweeps through the lower priority queues and give them some attention
as well, particularly in the area of new module changes. So it doesn’t necessarily mean that we’ll be exhausting all of
the higher-priority queues before getting to your ticket.

340 Chapter 1. About Ansible

https://ansible.com/tower
https://access.redhat.com/products/ansible-tower-red-hat/
https://github.com/ansible/community/blob/master/MEETINGS.md

Ansible 2.2 Documentation, 2.4

Every bit of effort helps - if you’re wishing to expedite the inclusion of a P3 feature pull request for instance, the best
thing you can do is help close P2 bug reports.

Community Code of Conduct

Every community can be strengthened by a diverse variety of viewpoints, insights, opinions, skillsets, and skill levels.
However, with diversity comes the potential for disagreement and miscommunication. The purpose of this Code of
Conduct is to ensure that disagreements and differences of opinion are conducted respectfully and on their own merits,
without personal attacks or other behavior that might create an unsafe or unwelcoming environment.

These policies are not designed to be a comprehensive set of Things You Cannot Do. We ask that you treat your fellow
community members with respect and courtesy, and in general, Don’t Be A Jerk. This Code of Conduct is meant to
be followed in spirit as much as in letter and is not exhaustive.

All Ansible events and participants therein are governed by this Code of Conduct and anti-harassment policy. We
expect organizers to enforce these guidelines throughout all events, and we expect attendees, speakers, sponsors, and
volunteers to help ensure a safe environment for our whole community. Specifically, this Code of Conduct covers par-
ticipation in all Ansible-related forums and mailing lists, code and documentation contributions, public IRC channels,
private correspondence, and public meetings.

Ansible community members are...

Considerate

Contributions of every kind have far-ranging consequences. Just as your work depends on the work of others, decisions
you make surrounding your contributions to the Ansible community will affect your fellow community members. You
are strongly encouraged to take those consequences into account while making decisions.

Patient

Asynchronous communication can come with its own frustrations, even in the most responsive of communities. Please
remember that our community is largely built on volunteered time, and that questions, contributions, and requests for
support may take some time to receive a response. Repeated “bumps” or “reminders” in rapid succession are not good
displays of patience. Additionally, it is considered poor manners to ping a specific person with general questions. Pose
your question to the community as a whole, and wait patiently for a response.

Respectful

Every community inevitably has disagreements, but remember that it is possible to disagree respectfully and courte-
ously. Disagreements are never an excuse for rudeness, hostility, threatening behavior, abuse (verbal or physical), or
personal attacks.

Kind

Everyone should feel welcome in the Ansible community, regardless of their background. Please be courteous, re-
spectful and polite to fellow community members. Do not make or post offensive comments related to skill level,
gender, gender identity or expression, sexual orientation, disability, physical appearance, body size, race, or religion.
Sexualized images or imagery, real or implied violence, intimidation, oppression, stalking, sustained disruption of ac-
tivities, publishing the personal information of others without explicit permission to do so, unwanted physical contact,
and unwelcome sexual attention are all strictly prohibited. Additionally, you are encouraged not to make assumptions
about the background or identity of your fellow community members.

Inquisitive

The only stupid question is the one that does not get asked. We encourage our users to ask early and ask often. Rather
than asking whether you can ask a question (the answer is always yes!), instead, simply ask your question. You are
encouraged to provide as many specifics as possible. Code snippets in the form of Gists or other paste site links are
almost always needed in order to get the most helpful answers. Refrain from pasting multiple lines of code directly
into the IRC channels - instead use gist.github.com or another paste site to provide code snippets.

1.9. Community Information & Contributing 341

Ansible 2.2 Documentation, 2.4

Helpful

The Ansible community is committed to being a welcoming environment for all users, regardless of skill level. We
were all beginners once upon a time, and our community cannot grow without an environment where new users feel
safe and comfortable asking questions. It can become frustrating to answer the same questions repeatedly; however,
community members are expected to remain courteous and helpful to all users equally, regardless of skill or knowledge
level. Avoid providing responses that prioritize snideness and snark over useful information. At the same time,
everyone is expected to read the provided documentation thoroughly. We are happy to answer questions, provide
strategic guidance, and suggest effective workflows, but we are not here to do your job for you.

Anti-harassment policy

Harassment includes (but is not limited to) all of the following behaviors:

• Offensive comments related to gender (including gender expression and identity), age, sexual orientation, dis-
ability, physical appearance, body size, race, and religion

• Derogatory terminology including words commonly known to be slurs

• Posting sexualized images or imagery in public spaces

• Deliberate intimidation

• Stalking

• Posting others’ personal information without explicit permission

• Sustained disruption of talks or other events

• Inappropriate physical contact

• Unwelcome sexual attention

Participants asked to stop any harassing behavior are expected to comply immediately. Sponsors are also subject
to the anti-harassment policy. In particular, sponsors should not use sexualized images, activities, or other material.
Meetup organizing staff and other volunteer organizers should not use sexualized attire or otherwise create a sexualized
environment at community events.

In addition to the behaviors outlined above, continuing to behave a certain way after you have been asked to stop also
constitutes harassment, even if that behavior is not specifically outlined in this policy. It is considerate and respectful
to stop doing something after you have been asked to stop, and all community members are expected to comply with
such requests immediately.

Policy violations

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting greg@ansible.com,
to any channel operator in the community IRC channels, or to the local organizers of an event. Meetup organizers are
encouraged to prominently display points of contact for reporting unacceptable behavior at local events.

If a participant engages in harassing behavior, the meetup organizers may take any action they deem appropriate. These
actions may include but are not limited to warning the offender, expelling the offender from the event, and barring the
offender from future community events.

Organizers will be happy to help participants contact security or local law enforcement, provide escorts to an alternate
location, or otherwise assist those experiencing harassment to feel safe for the duration of the meetup. We value the
safety and well-being of our community members and want everyone to feel welcome at our events, both online and
offline.

We expect all participants, organizers, speakers, and attendees to follow these policies at our all of our event venues
and event-related social events.

342 Chapter 1. About Ansible

mailto:greg@ansible.com

Ansible 2.2 Documentation, 2.4

The Ansible Community Code of Conduct is licensed under the Creative Commons Attribution-Share Alike 3.0 li-
cense. Our Code of Conduct was adapted from Codes of Conduct of other open source projects, including:

• Contributor Covenant

• Elastic

• The Fedora Project

• OpenStack

• Puppet Labs

• Ubuntu

Contributors License Agreement

By contributing you agree that these contributions are your own (or approved by your employer) and you grant a full,
complete, irrevocable copyright license to all users and developers of the project, present and future, pursuant to the
license of the project.

Ansible Galaxy

Ansible Galaxy refers to the Galaxy website where users can share roles, and to a command line tool for installing,
creating and managing roles.

Topics

• Ansible Galaxy

– The Website

– The command line tool

* Installing Roles

· roles_path

· version

· Installing multiple roles from a file

· Dependencies

* Create roles

· Force

· Container Enabled

· Using a Custom Role Skeleton

* Search for Roles

* Get more information about a role

* List installed roles

* Remove an installed role

* Authenticate with Galaxy

1.10. Ansible Galaxy 343

https://galaxy.ansible.com

Ansible 2.2 Documentation, 2.4

* Import a role

· Branch

· Role name

· No wait

* Delete a role

* Travis integrations

· List Travis integrations

· Remove Travis integrations

The Website

Galaxy, is a free site for finding, downloading, and sharing community developed roles. Downloading roles from
Galaxy is a great way to jumpstart your automation projects.

You can also use the site to share roles that you create. By authenticating with the site using your GitHub account,
you’re able to import roles, making them available to the Ansible community. Imported roles become available in the
Galaxy search index and visible on the site, allowing users to discover and download them.

Learn more by viewing the About page.

The command line tool

The ansible-galaxy command comes bundled with Ansible, and you can use it to install roles from Galaxy or
directly from a git based SCM. You can also use it to create a new role, remove roles, or perform tasks on the Galaxy
website.

The command line tool by default communicates with the Galaxy website API using the server address
https://galaxy.ansible.com. Since the Galaxy project is an open source project, you may be running your own in-
ternal Galaxy server and wish to override the default server address. You can do this using the –server option or by
setting the Galaxy server value in your ansible.cfg file. For information on setting the value in ansible.cfg visit Galaxy
Settings.

Installing Roles

Use the ansible-galaxy command to download roles from the Galaxy website

$ ansible-galaxy install username.role_name

roles_path

Be aware that by default Ansible downloads roles to the path specified by the environment variable ANSI-
BLE_ROLES_PATH. This can be set to a series of directories (i.e. /etc/ansible/roles:~/.ansible/roles), in which case
the first writable path will be used. When Ansible is first installed it defaults to /etc/ansible/roles, which requires root
privileges.

You can override this by setting the environment variable in your session, defining roles_path in an ansible.cfg file, or
by using the –roles-path option. The following provides an example of using –roles-path to install the role into the
current working directory:

344 Chapter 1. About Ansible

https://galaxy.ansible.com
https://galaxy.ansible.com/intro
https://github.com/ansible/galaxy
https://galaxy.ansible.com

Ansible 2.2 Documentation, 2.4

$ ansible-galaxy install --roles-path . geerlingguy.apache

:

Configuration file All about configuration files

version

You can install a specific version of a role from Galaxy by appending a comma and the value of a GitHub release tag.
For example:

$ ansible-galaxy install geerlingguy.apache,v1.0.0

It’s also possible to point directly to the git repository and specify a branch name or commit hash as the version. For
example, the following will install a specific commit:

$ ansible-galaxy install git+https://github.com/geerlingguy/ansible-role-apache.git,
→˓0b7cd353c0250e87a26e0499e59e7fd265cc2f25

Installing multiple roles from a file

Beginning with Ansible 1.8 it is possible to install multiple roles by including the roles in a requirements.yml file. The
format of the file is YAML, and the file extension must be either .yml or .yaml.

Use the following command to install roles included in requirements.yml:

$ ansible-galaxy install -r requirements.yml

Again, the extension is important. If the .yml extension is left off, the ansible-galaxy CLI assumes the file is in
an older, now deprecated, “basic” format.

Each role in the file will have one or more of the following attributes:

src The source of the role. Use the format username.role_name, if downloading from Galaxy; otherwise,
provide a URL pointing to a repository within a git based SCM. See the examples below. This is a
required attribute.

scm Specify the SCM. As of this writing only git or hg are supported. See the examples below. Defaults
to git.

version: The version of the role to download. Provide a release tag value, commit hash, or branch name.
Defaults to master.

name: Download the role to a specific name. Defaults to the Galaxy name when downloading from
Galaxy, otherwise it defaults to the name of the repository.

Use the following example as a guide for specifying roles in requirements.yml:

from galaxy
- src: yatesr.timezone

from GitHub
- src: https://github.com/bennojoy/nginx

from GitHub, overriding the name and specifying a specific tag
- src: https://github.com/bennojoy/nginx

version: master

1.10. Ansible Galaxy 345

Ansible 2.2 Documentation, 2.4

name: nginx_role

from a webserver, where the role is packaged in a tar.gz
- src: https://some.webserver.example.com/files/master.tar.gz

name: http-role

from Bitbucket
- src: git+http://bitbucket.org/willthames/git-ansible-galaxy

version: v1.4

from Bitbucket, alternative syntax and caveats
- src: http://bitbucket.org/willthames/hg-ansible-galaxy

scm: hg

from GitLab or other git-based scm
- src: git@gitlab.company.com:mygroup/ansible-base.git

scm: git
version: "0.1" # quoted, so YAML doesn't parse this as a floating-point value

Dependencies

Roles can also be dependent on other roles, and when you install a role that has dependencies, those dependenices will
automatically be installed.

You specify role dependencies in the meta/main.yml file by providing a list of roles. If the source of a role is Galaxy,
you can simply specify the role in the format username.role_name. The more complex format used in requirements.yml
is also supported, allowing you to provide src, scm, version and name.

Dependencies found in Galaxy can be specified as follows:

dependencies:
- geerlingguy.apache
- geerlingguy.ansible

The complex form can also be used as follows:

dependencies:
- src: geerlingguy.ansible
- src: git+https://github.com/geerlingguy/ansible-role-composer.git
version: 775396299f2da1f519f0d8885022ca2d6ee80ee8
name: composer

When dependencies are encountered by ansible-galaxy, it will automatically install each dependency to the
roles_path. To understand how dependencies are handled during play execution, see Playbook Roles and Include
Statements.

: At the time of this writing, the Galaxy website expects all role dependencies to exist in Galaxy, and therefore
dependencies to be specified in the username.role_name format. If you import a role with a dependency where the src
value is a URL, the import process will fail.

346 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Create roles

Use the init command to initialize the base structure of a new role, saving time on creating the various directories
and main.yml files a role requires

$ ansible-galaxy init role_name

The above will create the following directory structure in the current working directory:

README.md
.travis.yml
defaults/

main.yml
files/
handlers/

main.yml
meta/

main.yml
templates/
tests/

inventory
test.yml

vars/
main.yml

Force

If a directory matching the name of the role already exists in the current working directory, the init command will result
in an error. To ignore the error use the –force option. Force will create the above subdirectories and files, replacing
anything that matches.

Container Enabled

If you are creating a Container Enabled role, use the –container-enabled option. This will create the same direc-
tory structure as above, but populate it with default files appropriate for a Container Enabled role. For instance, the
README.md has a slightly different structure, the .travis.yml file tests the role using Ansible Container, and the meta
directory includes a container.yml file.

Using a Custom Role Skeleton

A custom role skeleton directory can be supplied as follows:

$ ansible-galaxy init --role-skeleton=/path/to/skeleton role_name

When a skeleton is provided, init will:

• copy all files and directories from the skeleton to the new role

• any .j2 files found outside of a templates folder will be rendered as templates. The only useful variable at the
moment is role_name

• The .git folder and any .git_keep files will not be copied

Alternatively, the role_skeleton and ignoring of files can be configured via ansible.cfg

1.10. Ansible Galaxy 347

https://github.com/ansible/ansible-container

Ansible 2.2 Documentation, 2.4

[galaxy]
role_skeleton = /path/to/skeleton
role_skeleton_ignore = ^.git$,^.*/.git_keep$

Search for Roles

Search the Galaxy database by tags, platforms, author and multiple keywords. For example:

$ ansible-galaxy search elasticsearch --author geerlingguy

The search command will return a list of the first 1000 results matching your search:

Found 2 roles matching your search:

Name Description
---- -----------
geerlingguy.elasticsearch Elasticsearch for Linux.
geerlingguy.elasticsearch-curator Elasticsearch curator for Linux.

Get more information about a role

Use the info command to view more detail about a specific role:

$ ansible-galaxy info username.role_name

This returns everything found in Galaxy for the role:

Role: username.role_name
description: Installs and configures a thing, a distributed, highly available

→˓NoSQL thing.
active: True
commit: c01947b7bc89ebc0b8a2e298b87ab416aed9dd57
commit_message: Adding travis
commit_url: https://github.com/username/repo_name/commit/

→˓c01947b7bc89ebc0b8a2e298b87ab
company: My Company, Inc.
created: 2015-12-08T14:17:52.773Z
download_count: 1
forks_count: 0
github_branch:
github_repo: repo_name
github_user: username
id: 6381
is_valid: True
issue_tracker_url:
license: Apache
min_ansible_version: 1.4
modified: 2015-12-08T18:43:49.085Z
namespace: username
open_issues_count: 0
path: /Users/username/projects/roles
scm: None
src: username.repo_name
stargazers_count: 0
travis_status_url: https://travis-ci.org/username/repo_name.svg?branch=master

348 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

version:
watchers_count: 1

List installed roles

Use list to show the name and version of each role installed in the roles_path.

$ ansible-galaxy list

- chouseknecht.role-install_mongod, master
- chouseknecht.test-role-1, v1.0.2
- chrismeyersfsu.role-iptables, master
- chrismeyersfsu.role-required_vars, master

Remove an installed role

Use remove to delete a role from roles_path:

$ ansible-galaxy remove username.role_name

Authenticate with Galaxy

Using the import, delete and setup commands to manage your roles on the Galaxy website requires authentica-
tion, and the login command can be used to do just that. Before you can use the login command, you must create
an account on the Galaxy website.

The login command requires using your GitHub credentials. You can use your username and password, or you can
create a personal access token. If you choose to create a token, grant minimal access to the token, as it is used just to
verify identify.

The following shows authenticating with the Galaxy website using a GitHub username and password:

$ ansible-galaxy login

We need your GitHub login to identify you.
This information will not be sent to Galaxy, only to api.github.com.
The password will not be displayed.

Use --github-token if you do not want to enter your password.

Github Username: dsmith
Password for dsmith:
Successfully logged into Galaxy as dsmith

When you choose to use your username and password, your password is not sent to Galaxy. It is used to authenticates
with GitHub and create a personal access token. It then sends the token to Galaxy, which in turn verifies that your
identity and returns a Galaxy access token. After authentication completes the GitHub token is destroyed.

If you do not wish to use your GitHub password, or if you have two-factor authentication enabled with GitHub, use
the –github-token option to pass a personal access token that you create.

1.10. Ansible Galaxy 349

https://help.github.com/articles/creating-an-access-token-for-command-line-use/

Ansible 2.2 Documentation, 2.4

Import a role

The import command requires that you first authenticate using the login command. Once authenticated you can
import any GitHub repository that you own or have been granted access.

Use the following to import to role:

$ ansible-galaxy import github_user github_repo

By default the command will wait for Galaxy to complete the import process, displaying the results as the import
progresses:

Successfully submitted import request 41
Starting import 41: role_name=myrole repo=githubuser/ansible-role-repo ref=
Retrieving GitHub repo githubuser/ansible-role-repo
Accessing branch: master
Parsing and validating meta/main.yml
Parsing galaxy_tags
Parsing platforms
Adding dependencies
Parsing and validating README.md
Adding repo tags as role versions
Import completed
Status SUCCESS : warnings=0 errors=0

Branch

Use the –branch option to import a specific branch. If not specified, the default branch for the repo will be used.

Role name

By default the name given to the role will be derived from the GitHub repository name. However, you can use the
–role-name option to override this and set the name.

No wait

If the –no-wait option is present, the command will not wait for results. Results of the most recent import for any of
your roles is available on the Galaxy web site by visiting My Imports.

Delete a role

The delete command requires that you first authenticate using the login command. Once authenticated you can
remove a role from the Galaxy web site. You are only allowed to remove roles where you have access to the repository
in GitHub.

Use the following to delete a role:

$ ansible-galaxy delete github_user github_repo

This only removes the role from Galaxy. It does not remove or alter the actual GitHub repository.

350 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Travis integrations

You can create an integration or connection between a role in Galaxy and Travis. Once the connection is established,
a build in Travis will automatically trigger an import in Galaxy, updating the search index with the latest information
about the role.

You create the integration using the setup command, but before an integration can be created, you must first authen-
ticate using the login command; you will also need an account in Travis, and your Travis token. Once you’re ready,
use the following command to create the integration:

$ ansible-galaxy setup travis github_user github_repo xxx-travis-token-xxx

The setup command requires your Travis token, however the token is not stored in Galaxy. It is used along with the
GitHub username and repo to create a hash as described in the Travis documentation. The hash is stored in Galaxy
and used to verify notifications received from Travis.

The setup command enables Galaxy to respond to notifications. To configure Travis to run a build on your repository
and send a notification, follow the Travis getting started guide.

To instruct Travis to notify Galaxy when a build completes, add the following to your .travis.yml file:

notifications:
webhooks: https://galaxy.ansible.com/api/v1/notifications/

List Travis integrations

Use the –list option to display your Travis integrations:

$ ansible-galaxy setup --list

ID Source Repo
---------- ---------- ----------
2 travis github_user/github_repo
1 travis github_user/github_repo

Remove Travis integrations

Use the –remove option to disable and remove a Travis integration:

$ ansible-galaxy setup --remove ID

Provide the ID of the integration to be disabled. You can find the ID by using the –list option.

:

Playbook Roles and Include Statements All about ansible roles

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

1.10. Ansible Galaxy 351

http://travis-ci.org
https://docs.travis-ci.com/user/notifications/
https://docs.travis-ci.com/user/getting-started/
http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Testing Strategies

Integrating Testing With Ansible Playbooks

Many times, people ask, “how can I best integrate testing with Ansible playbooks?” There are many options. Ansible
is actually designed to be a “fail-fast” and ordered system, therefore it makes it easy to embed testing directly in
Ansible playbooks. In this chapter, we’ll go into some patterns for integrating tests of infrastructure and discuss the
right level of testing that may be appropriate.

: This is a chapter about testing the application you are deploying, not the chapter on how to test Ansible modules
during development. For that content, please hop over to the Development section.

By incorporating a degree of testing into your deployment workflow, there will be fewer surprises when code hits
production and, in many cases, tests can be leveraged in production to prevent failed updates from migrating across an
entire installation. Since it’s push-based, it’s also very easy to run the steps on the localhost or testing servers. Ansible
lets you insert as many checks and balances into your upgrade workflow as you would like to have.

The Right Level of Testing

Ansible resources are models of desired-state. As such, it should not be necessary to test that services are started,
packages are installed, or other such things. Ansible is the system that will ensure these things are declaratively true.
Instead, assert these things in your playbooks.

tasks:
- service: name=foo state=started enabled=yes

If you think the service may not be started, the best thing to do is request it to be started. If the service fails to start,
Ansible will yell appropriately. (This should not be confused with whether the service is doing something functional,
which we’ll show more about how to do later).

Check Mode As A Drift Test

In the above setup, –check mode in Ansible can be used as a layer of testing as well. If running a deployment playbook
against an existing system, using the –check flag to the ansible command will report if Ansible thinks it would have
had to have made any changes to bring the system into a desired state.

This can let you know up front if there is any need to deploy onto the given system. Ordinarily scripts and commands
don’t run in check mode, so if you want certain steps to always execute in check mode, such as calls to the script
module, disable check mode for those tasks:

roles:
- webserver

tasks:
- script: verify.sh
check_mode: no

Modules That Are Useful for Testing

Certain playbook modules are particularly good for testing. Below is an example that ensures a port is open:

352 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

tasks:

- wait_for: host={{ inventory_hostname }} port=22
delegate_to: localhost

Here’s an example of using the URI module to make sure a web service returns:

tasks:

- action: uri url=http://www.example.com return_content=yes
register: webpage

- fail: msg='service is not happy'
when: "'AWESOME' not in webpage.content"

It’s easy to push an arbitrary script (in any language) on a remote host and the script will automatically fail if it has a
non-zero return code:

tasks:

- script: test_script1
- script: test_script2 --parameter value --parameter2 value

If using roles (you should be, roles are great!), scripts pushed by the script module can live in the ‘files/’ directory of
a role.

And the assert module makes it very easy to validate various kinds of truth:

tasks:

- shell: /usr/bin/some-command --parameter value
register: cmd_result

- assert:
that:
- "'not ready' not in cmd_result.stderr"
- "'gizmo enabled' in cmd_result.stdout"

Should you feel the need to test for existence of files that are not declaratively set by your Ansible configuration, the
‘stat’ module is a great choice:

tasks:

- stat: path=/path/to/something
register: p

- assert:
that:
- p.stat.exists and p.stat.isdir

As mentioned above, there’s no need to check things like the return codes of commands. Ansible is checking them
automatically. Rather than checking for a user to exist, consider using the user module to make it exist.

Ansible is a fail-fast system, so when there is an error creating that user, it will stop the playbook run. You do not have
to check up behind it.

1.11. Testing Strategies 353

Ansible 2.2 Documentation, 2.4

Testing Lifecycle

If writing some degree of basic validation of your application into your playbooks, they will run every time you deploy.

As such, deploying into a local development VM and a staging environment will both validate that things are according
to plan ahead of your production deploy.

Your workflow may be something like this:

- Use the same playbook all the time with embedded tests in development
- Use the playbook to deploy to a staging environment (with the same playbooks) that
→˓simulates production
- Run an integration test battery written by your QA team against staging
- Deploy to production, with the same integrated tests.

Something like an integration test battery should be written by your QA team if you are a production webservice. This
would include things like Selenium tests or automated API tests and would usually not be something embedded into
your Ansible playbooks.

However, it does make sense to include some basic health checks into your playbooks, and in some cases it may be
possible to run a subset of the QA battery against remote nodes. This is what the next section covers.

Integrating Testing With Rolling Updates

If you have read into Delegation, Rolling Updates, and Local Actions it may quickly become apparent that the rolling
update pattern can be extended, and you can use the success or failure of the playbook run to decide whether to add a
machine into a load balancer or not.

This is the great culmination of embedded tests:

- hosts: webservers
serial: 5

pre_tasks:

- name: take out of load balancer pool
command: /usr/bin/take_out_of_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1

roles:

- common
- webserver
- apply_testing_checks

post_tasks:

- name: add back to load balancer pool
command: /usr/bin/add_back_to_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1

Of course in the above, the “take out of the pool” and “add back” steps would be replaced with a call to a Ansible load
balancer module or appropriate shell command. You might also have steps that use a monitoring module to start and
end an outage window for the machine.

354 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

However, what you can see from the above is that tests are used as a gate – if the “apply_testing_checks” step is not
performed, the machine will not go back into the pool.

Read the delegation chapter about “max_fail_percentage” and you can also control how many failing tests will stop a
rolling update from proceeding.

This above approach can also be modified to run a step from a testing machine remotely against a machine:

- hosts: webservers
serial: 5

pre_tasks:

- name: take out of load balancer pool
command: /usr/bin/take_out_of_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1

roles:

- common
- webserver

tasks:
- script: /srv/qa_team/app_testing_script.sh --server {{ inventory_hostname }}

delegate_to: testing_server

post_tasks:

- name: add back to load balancer pool
command: /usr/bin/add_back_to_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1

In the above example, a script is run from the testing server against a remote node prior to bringing it back into the
pool.

In the event of a problem, fix the few servers that fail using Ansible’s automatically generated retry file to repeat the
deploy on just those servers.

Achieving Continuous Deployment

If desired, the above techniques may be extended to enable continuous deployment practices.

The workflow may look like this:

- Write and use automation to deploy local development VMs
- Have a CI system like Jenkins deploy to a staging environment on every code change
- The deploy job calls testing scripts to pass/fail a build on every deploy
- If the deploy job succeeds, it runs the same deploy playbook against production
→˓inventory

Some Ansible users use the above approach to deploy a half-dozen or dozen times an hour without taking all of their
infrastructure offline. A culture of automated QA is vital if you wish to get to this level.

If you are still doing a large amount of manual QA, you should still make the decision on whether to deploy manually
as well, but it can still help to work in the rolling update patterns of the previous section and incorporate some basic
health checks using modules like ‘script’, ‘stat’, ‘uri’, and ‘assert’.

1.11. Testing Strategies 355

Ansible 2.2 Documentation, 2.4

Conclusion

Ansible believes you should not need another framework to validate basic things of your infrastructure is true. This
is the case because Ansible is an order-based system that will fail immediately on unhandled errors for a host, and
prevent further configuration of that host. This forces errors to the top and shows them in a summary at the end of the
Ansible run.

However, as Ansible is designed as a multi-tier orchestration system, it makes it very easy to incorporate tests into
the end of a playbook run, either using loose tasks or roles. When used with rolling updates, testing steps can decide
whether to put a machine back into a load balanced pool or not.

Finally, because Ansible errors propagate all the way up to the return code of the Ansible program itself, and Ansible
by default runs in an easy push-based mode, Ansible is a great step to put into a build environment if you wish to use
it to roll out systems as part of a Continuous Integration/Continuous Delivery pipeline, as is covered in sections above.

The focus should not be on infrastructure testing, but on application testing, so we strongly encourage getting together
with your QA team and ask what sort of tests would make sense to run every time you deploy development VMs,
and which sort of tests they would like to run against the staging environment on every deploy. Obviously at the
development stage, unit tests are great too. But don’t unit test your playbook. Ansible describes states of resources
declaratively, so you don’t have to. If there are cases where you want to be sure of something though, that’s great, and
things like stat/assert are great go-to modules for that purpose.

In all, testing is a very organizational and site-specific thing. Everybody should be doing it, but what makes the most
sense for your environment will vary with what you are deploying and who is using it – but everyone benefits from a
more robust and reliable deployment system.

:

About Modules All the documentation for Ansible modules

Playbooks An introduction to playbooks

Delegation, Rolling Updates, and Local Actions Delegation, useful for working with load balancers, clouds, and lo-
cally executed steps.

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Frequently Asked Questions

Here are some commonly asked questions and their answers.

How can I set the PATH or any other environment variable for a task or entire play-
book?

Setting environment variables can be done with the environment keyword. It can be used at the task or the play level:

environment:
PATH: "{{ ansible_env.PATH }}:/thingy/bin"
SOME: value

: starting in 2.0.1 the setup task from gather_facts also inherits the environment directive from the play, you might
need to use the |default filter to avoid errors if setting this at play level.

356 Chapter 1. About Ansible

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

How do I handle different machines needing different user accounts or ports to log
in with?

Setting inventory variables in the inventory file is the easiest way.

: Ansible 2.0 has deprecated the “ssh” from ansible_ssh_user, ansible_ssh_host, and
ansible_ssh_port to become ansible_user, ansible_host, and ansible_port. If you are using
a version of Ansible prior to 2.0, you should continue using the older style variables (ansible_ssh_*). These
shorter variables are ignored, without warning, in older versions of Ansible.

For instance, suppose these hosts have different usernames and ports:

[webservers]
asdf.example.com ansible_port=5000 ansible_user=alice
jkl.example.com ansible_port=5001 ansible_user=bob

You can also dictate the connection type to be used, if you want:

[testcluster]
localhost ansible_connection=local
/path/to/chroot1 ansible_connection=chroot
foo.example.com ansible_connection=paramiko

You may also wish to keep these in group variables instead, or file them in a group_vars/<groupname> file. See the
rest of the documentation for more information about how to organize variables.

How do I get ansible to reuse connections, enable Kerberized SSH, or have Ansible
pay attention to my local SSH config file?

Switch your default connection type in the configuration file to ‘ssh’, or use ‘-c ssh’ to use Native OpenSSH for
connections instead of the python paramiko library. In Ansible 1.2.1 and later, ‘ssh’ will be used by default if OpenSSH
is new enough to support ControlPersist as an option.

Paramiko is great for starting out, but the OpenSSH type offers many advanced options. You will want to run Ansible
from a machine new enough to support ControlPersist, if you are using this connection type. You can still manage
older clients. If you are using RHEL 6, CentOS 6, SLES 10 or SLES 11 the version of OpenSSH is still a bit old,
so consider managing from a Fedora or openSUSE client even though you are managing older nodes, or just use
paramiko.

We keep paramiko as the default as if you are first installing Ansible on an EL box, it offers a better experience for
new users.

How do I configure a jump host to access servers that I have no direct access to?

With Ansible 2, you can set a ProxyCommand in the ansible_ssh_common_args inventory variable. Any arguments
specified in this variable are added to the sftp/scp/ssh command line when connecting to the relevant host(s). Consider
the following inventory group:

[gatewayed]
foo ansible_host=192.0.2.1
bar ansible_host=192.0.2.2

You can create group_vars/gatewayed.yml with the following contents:

1.12. Frequently Asked Questions 357

Ansible 2.2 Documentation, 2.4

ansible_ssh_common_args: '-o ProxyCommand="ssh -W %h:%p -q user@gateway.example.com"'

Ansible will append these arguments to the command line when trying to connect to any hosts in the group gate-
wayed. (These arguments are used in addition to any ssh_args from ansible.cfg, so you do not need to repeat global
ControlPersist settings in ansible_ssh_common_args.)

Note that ssh -W is available only with OpenSSH 5.4 or later. With older versions, it’s necessary to execute nc %h:%p
or some equivalent command on the bastion host.

With earlier versions of Ansible, it was necessary to configure a suitable ProxyCommand for one or more hosts in
~/.ssh/config, or globally by setting ssh_args in ansible.cfg.

How do I speed up management inside EC2?

Don’t try to manage a fleet of EC2 machines from your laptop. Connect to a management node inside EC2 first and
run Ansible from there.

How do I handle python pathing not having a Python 2.X in /usr/bin/python on a
remote machine?

While you can write ansible modules in any language, most ansible modules are written in Python, and some of these
are important core ones.

By default, Ansible assumes it can find a /usr/bin/python on your remote system that is a 2.X version of Python,
specifically 2.6 or higher.

Setting the inventory variable ‘ansible_python_interpreter’ on any host will allow Ansible to auto-replace the in-
terpreter used when executing python modules. Thus, you can point to any python you want on the system if
/usr/bin/python on your system does not point to a Python 2.X interpreter.

Some Linux operating systems, such as Arch, may only have Python 3 installed by default. This is not sufficient and
you will get syntax errors trying to run modules with Python 3. Python 3 is essentially not the same language as
Python 2. Python 3 support is being worked on but some Ansible modules are not yet ported to run under Python 3.0.
This is not a problem though as you can just install Python 2 also on a managed host.

Do not replace the shebang lines of your python modules. Ansible will do this for you automatically at deploy time.

What is the best way to make content reusable/redistributable?

If you have not done so already, read all about “Roles” in the playbooks documentation. This helps you make playbook
content self-contained, and works well with things like git submodules for sharing content with others.

If some of these plugin types look strange to you, see the API documentation for more details about ways Ansible can
be extended.

Where does the configuration file live and what can I configure in it?

See Configuration file.

358 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

How do I disable cowsay?

If cowsay is installed, Ansible takes it upon itself to make your day happier when running playbooks. If you decide that
you would like to work in a professional cow-free environment, you can either uninstall cowsay, or set an environment
variable:

export ANSIBLE_NOCOWS=1

How do I see a list of all of the ansible_ variables?

Ansible by default gathers “facts” about the machines under management, and these facts can be accessed in Playbooks
and in templates. To see a list of all of the facts that are available about a machine, you can run the “setup” module as
an ad-hoc action:

ansible -m setup hostname

This will print out a dictionary of all of the facts that are available for that particular host. You might want to pipe the
output to a pager.

How do I see all the inventory vars defined for my host?

By running the following command, you can see vars resulting from what you’ve defined in the inventory:

ansible -m debug -a "var=hostvars['hostname']" localhost

How do I loop over a list of hosts in a group, inside of a template?

A pretty common pattern is to iterate over a list of hosts inside of a host group, perhaps to populate a template
configuration file with a list of servers. To do this, you can just access the “$groups” dictionary in your template, like
this:

{% for host in groups['db_servers'] %}
{{ host }}

{% endfor %}

If you need to access facts about these hosts, for instance, the IP address of each hostname, you need to make sure that
the facts have been populated. For example, make sure you have a play that talks to db_servers:

- hosts: db_servers
tasks:
- debug: msg="doesn't matter what you do, just that they were talked to

→˓previously."

Then you can use the facts inside your template, like this:

{% for host in groups['db_servers'] %}
{{ hostvars[host]['ansible_eth0']['ipv4']['address'] }}

{% endfor %}

1.12. Frequently Asked Questions 359

Ansible 2.2 Documentation, 2.4

How do I access a variable name programmatically?

An example may come up where we need to get the ipv4 address of an arbitrary interface, where the interface to be
used may be supplied via a role parameter or other input. Variable names can be built by adding strings together, like
so:

{{ hostvars[inventory_hostname]['ansible_' + which_interface]['ipv4']['address'] }}

The trick about going through hostvars is necessary because it’s a dictionary of the entire namespace of variables.
‘inventory_hostname’ is a magic variable that indicates the current host you are looping over in the host loop.

How do I access a variable of the first host in a group?

What happens if we want the ip address of the first webserver in the webservers group? Well, we can do that too. Note
that if we are using dynamic inventory, which host is the ‘first’ may not be consistent, so you wouldn’t want to do this
unless your inventory is static and predictable. (If you are using Ansible Tower, it will use database order, so this isn’t
a problem even if you are using cloud based inventory scripts).

Anyway, here’s the trick:

{{ hostvars[groups['webservers'][0]]['ansible_eth0']['ipv4']['address'] }}

Notice how we’re pulling out the hostname of the first machine of the webservers group. If you are doing this in a
template, you could use the Jinja2 ‘#set’ directive to simplify this, or in a playbook, you could also use set_fact:

- set_fact: headnode={{ groups[['webservers'][0]] }}

- debug: msg={{ hostvars[headnode].ansible_eth0.ipv4.address }}

Notice how we interchanged the bracket syntax for dots – that can be done anywhere.

How do I copy files recursively onto a target host?

The “copy” module has a recursive parameter. However, take a look at the “synchronize” module if you want to do
something more efficient for a large number of files. The “synchronize” module wraps rsync. See the module index
for info on both of these modules.

How do I access shell environment variables?

If you just need to access existing variables, use the ‘env’ lookup plugin. For example, to access the value of the
HOME environment variable on the management machine:

...

vars:
local_home: "{{ lookup('env','HOME') }}"

If you need to set environment variables, see the Advanced Playbooks section about environments.

Starting with Ansible 1.4, remote environment variables are available via facts in the ‘ansible_env’ variable:

{{ ansible_env.SOME_VARIABLE }}

360 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

How do I generate crypted passwords for the user module?

The mkpasswd utility that is available on most Linux systems is a great option:

mkpasswd --method=sha-512

If this utility is not installed on your system (e.g. you are using OS X) then you can still easily generate these passwords
using Python. First, ensure that the Passlib password hashing library is installed:

pip install passlib

Once the library is ready, SHA512 password values can then be generated as follows:

python -c "from passlib.hash import sha512_crypt; import getpass; print sha512_crypt.
→˓using(rounds=5000).hash(getpass.getpass())"

Use the integrated Hashing filters to generate a hashed version of a password. You shouldn’t put plaintext passwords
in your playbook or host_vars; instead, use Vault to encrypt sensitive data.

Can I get training on Ansible?

Yes! See our services page for information on our services and training offerings. Email info@ansible.com for further
details.

We also offer free web-based training classes on a regular basis. See our webinar page for more info on upcoming
webinars.

Is there a web interface / REST API / etc?

Yes! Ansible, Inc makes a great product that makes Ansible even more powerful and easy to use. See Ansible Tower.

How do I submit a change to the documentation?

Great question! Documentation for Ansible is kept in the main project git repository, and complete instructions for
contributing can be found in the docs README viewable on GitHub. Thanks!

How do I keep secret data in my playbook?

If you would like to keep secret data in your Ansible content and still share it publicly or keep things in source control,
see Vault.

In Ansible 1.8 and later, if you have a task that you don’t want to show the results or command given to it when using
-v (verbose) mode, the following task or playbook attribute can be useful:

- name: secret task
shell: /usr/bin/do_something --value={{ secret_value }}
no_log: True

This can be used to keep verbose output but hide sensitive information from others who would otherwise like to be
able to see the output.

The no_log attribute can also apply to an entire play:

1.12. Frequently Asked Questions 361

https://bitbucket.org/ecollins/passlib/wiki/Home
https://www.ansible.com/consulting
mailto:info@ansible.com
https://www.ansible.com/webinars-training
https://github.com/ansible/ansible/blob/devel/docs/docsite/README.md

Ansible 2.2 Documentation, 2.4

- hosts: all
no_log: True

Though this will make the play somewhat difficult to debug. It’s recommended that this be applied to single tasks only,
once a playbook is completed. Note that the use of the no_log attribute does not prevent data from being shown when
debugging Ansible itself via the ANSIBLE_DEBUG environment variable.

When should I use {{ }}? Also, how to interpolate variables or dynamic variable
names

A steadfast rule is ‘always use {{ }} except when when:‘. Conditionals are always run through Jinja2 as to resolve the
expression, so when:, failed_when: and changed_when: are always templated and you should avoid adding {{}}.

In most other cases you should always use the brackets, even if previously you could use variables without specifying
(like with_ clauses), as this made it hard to distinguish between an undefined variable and a string.

Another rule is ‘moustaches don’t stack’. We often see this:

{{ somevar_{{other_var}} }}

The above DOES NOT WORK, if you need to use a dynamic variable use the hostvars or vars dictionary as appropriate:

{{ hostvars[inventory_hostname]['somevar_' + other_var] }}

Why don’t you ship in X format?

Several reasons, in most cases it has to do with maintainability, there are tons of ways to ship software and it is a
herculean task to try to support them all. In other cases there are technical issues, for example, for python wheels, our
dependencies are not present so there is little to no gain.

I don’t see my question here

Please see the section below for a link to IRC and the Google Group, where you can ask your question there.

:

Ansible Documentation The documentation index

Playbooks An introduction to playbooks

Best Practices Best practices advice

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

Glossary

The following is a list (and re-explanation) of term definitions used elsewhere in the Ansible documentation.

Consult the documentation home page for the full documentation and to see the terms in context, but this should be a
good resource to check your knowledge of Ansible’s components and understand how they fit together. It’s something
you might wish to read for review or when a term comes up on the mailing list.

362 Chapter 1. About Ansible

http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Action An action is a part of a task that specifies which of the modules to run and which arguments to pass to that
module. Each task can have only one action, but it may also have other parameters.

Ad Hoc Refers to running Ansible to perform some quick command, using /usr/bin/ansible, rather than the
orchestration language, which is /usr/bin/ansible-playbook. An example of an ad hoc command
might be rebooting 50 machines in your infrastructure. Anything you can do ad hoc can be accomplished by
writing a playbook and playbooks can also glue lots of other operations together.

Async Refers to a task that is configured to run in the background rather than waiting for completion. If you have
a long process that would run longer than the SSH timeout, it would make sense to launch that task in async
mode. Async modes can poll for completion every so many seconds or can be configured to “fire and forget”,
in which case Ansible will not even check on the task again; it will just kick it off and proceed to future steps.
Async modes work with both /usr/bin/ansible and /usr/bin/ansible-playbook.

Callback Plugin Refers to some user-written code that can intercept results from Ansible and do something with
them. Some supplied examples in the GitHub project perform custom logging, send email, or even play sound
effects.

Check Mode Refers to running Ansible with the --check option, which does not make any changes on the remote
systems, but only outputs the changes that might occur if the command ran without this flag. This is analogous
to so-called “dry run” modes in other systems, though the user should be warned that this does not take into
account unexpected command failures or cascade effects (which is true of similar modes in other systems). Use
this to get an idea of what might happen, but do not substitute it for a good staging environment.

Connection Plugin By default, Ansible talks to remote machines through pluggable libraries. Ansible supports
native OpenSSH (SSH (Native)) or a Python implementation called paramiko. OpenSSH is preferred if you
are using a recent version, and also enables some features like Kerberos and jump hosts. This is covered in
the getting started section. There are also other connection types like accelerate mode, which must be
bootstrapped over one of the SSH-based connection types but is very fast, and local mode, which acts on the
local system. Users can also write their own connection plugins.

Conditionals A conditional is an expression that evaluates to true or false that decides whether a given task is
executed on a given machine or not. Ansible’s conditionals are powered by the ‘when’ statement, which are
discussed in the playbook documentation.

Declarative An approach to achieving a task that uses a description of the final state rather than a description of
the sequence of steps necessary to achieve that state. For a real world example, a declarative specification of a
task would be: “put me in California”. Depending on your current location, the sequence of steps to get you to
California may vary, and if you are already in California, nothing at all needs to be done. Ansible’s Resources
are declarative; it figures out the steps needed to achieve the final state. It also lets you know whether or not any
steps needed to be taken to get to the final state.

Diff Mode A --diff flag can be passed to Ansible to show what changed on modules that support it. You can
combine it with --check to get a good ‘dry run’. File diffs are normally in unified diff format.

Executor A core software component of Ansible that is the power behind /usr/bin/ansible directly – and
corresponds to the invocation of each task in a playbook. The Executor is something Ansible developers may
talk about, but it’s not really user land vocabulary.

Facts Facts are simply things that are discovered about remote nodes. While they can be used in playbooks and
templates just like variables, facts are things that are inferred, rather than set. Facts are automatically discovered
by Ansible when running plays by executing the internal setup module on the remote nodes. You never have to
call the setup module explicitly, it just runs, but it can be disabled to save time if it is not needed or you can tell
ansible to collect only a subset of the full facts via the gather_subset: option. For the convenience of users
who are switching from other configuration management systems, the fact module will also pull in facts from
the ohai and facter tools if they are installed. These are fact libraries from Chef and Puppet, respectively.
(These may also be disabled via gather_subset:)

Filter Plugin A filter plugin is something that most users will never need to understand. These allow for the creation

1.13. Glossary 363

Ansible 2.2 Documentation, 2.4

of new Jinja2 filters, which are more or less only of use to people who know what Jinja2 filters are. If you need
them, you can learn how to write them in the API docs section.

Forks Ansible talks to remote nodes in parallel and the level of parallelism can be set either by passing --forks or
editing the default in a configuration file. The default is a very conservative five (5) forks, though if you have a
lot of RAM, you can easily set this to a value like 50 for increased parallelism.

Gather Facts (Boolean) Facts are mentioned above. Sometimes when running a multi-play playbook, it is desirable
to have some plays that don’t bother with fact computation if they aren’t going to need to utilize any of these
values. Setting gather_facts: False on a playbook allows this implicit fact gathering to be skipped.

Globbing Globbing is a way to select lots of hosts based on wildcards, rather than the name of the host specifically, or
the name of the group they are in. For instance, it is possible to select ww* to match all hosts starting with www.
This concept is pulled directly from Func, one of Michael DeHaan’s (an Ansible Founder) earlier projects.
In addition to basic globbing, various set operations are also possible, such as ‘hosts in this group and not in
another group’, and so on.

Group A group consists of several hosts assigned to a pool that can be conveniently targeted together, as well as
given variables that they share in common.

Group Vars The group_vars/ files are files that live in a directory alongside an inventory file, with an optional
filename named after each group. This is a convenient place to put variables that are provided to a given group,
especially complex data structures, so that these variables do not have to be embedded in the inventory file or
playbook.

Handlers Handlers are just like regular tasks in an Ansible playbook (see Tasks) but are only run if the Task contains
a notify directive and also indicates that it changed something. For example, if a config file is changed, then
the task referencing the config file templating operation may notify a service restart handler. This means services
can be bounced only if they need to be restarted. Handlers can be used for things other than service restarts, but
service restarts are the most common usage.

Host A host is simply a remote machine that Ansible manages. They can have individual variables assigned to them,
and can also be organized in groups. All hosts have a name they can be reached at (which is either an IP address
or a domain name) and, optionally, a port number, if they are not to be accessed on the default SSH port.

Host Specifier Each Play in Ansible maps a series of tasks (which define the role, purpose, or orders of a system) to
a set of systems.

This hosts: directive in each play is often called the hosts specifier.

It may select one system, many systems, one or more groups, or even some hosts that are in one group and
explicitly not in another.

Host Vars Just like Group Vars, a directory alongside the inventory file named host_vars/ can contain a file
named after each hostname in the inventory file, in YAML format. This provides a convenient place to assign
variables to the host without having to embed them in the inventory file. The Host Vars file can also be used to
define complex data structures that can’t be represented in the inventory file.

Idempotency An operation is idempotent if the result of performing it once is exactly the same as the result of
performing it repeatedly without any intervening actions.

Includes The idea that playbook files (which are nothing more than lists of plays) can include other lists of plays, and
task lists can externalize lists of tasks in other files, and similarly with handlers. Includes can be parameterized,
which means that the loaded file can pass variables. For instance, an included play for setting up a WordPress
blog may take a parameter called user and that play could be included more than once to create a blog for both
alice and bob.

Inventory A file (by default, Ansible uses a simple INI format) that describes Hosts and Groups in Ansible. Inventory
can also be provided via an Inventory Script (sometimes called an “External Inventory Script”).

364 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Inventory Script A very simple program (or a complicated one) that looks up hosts, group membership for hosts,
and variable information from an external resource – whether that be a SQL database, a CMDB solution, or
something like LDAP. This concept was adapted from Puppet (where it is called an “External Nodes Classifier”)
and works more or less exactly the same way.

Jinja2 Jinja2 is the preferred templating language of Ansible’s template module. It is a very simple Python template
language that is generally readable and easy to write.

JSON Ansible uses JSON for return data from remote modules. This allows modules to be written in any language,
not just Python.

Lazy Evaluation In general, Ansible evaluates any variables in playbook content at the last possible second, which
means that if you define a data structure that data structure itself can define variable values within it, and
everything “just works” as you would expect. This also means variable strings can include other variables inside
of those strings.

Library A collection of modules made available to /usr/bin/ansible or an Ansible playbook.

Limit Groups By passing --limit somegroup to ansible or ansible-playbook, the commands can be
limited to a subset of hosts. For instance, this can be used to run a playbook that normally targets an entire set
of servers to one particular server.

Local Action A local_action directive in a playbook targeting remote machines means that the given step will actually
occur on the local machine, but that the variable {{ ansible_hostname }} can be passed in to reference
the remote hostname being referred to in that step. This can be used to trigger, for example, an rsync operation.

Local Connection By using connection: local in a playbook, or passing -c local to /usr/bin/
ansible, this indicates that we are managing the local host and not a remote machine.

Lookup Plugin A lookup plugin is a way to get data into Ansible from the outside world. These are how such things
as with_items, a basic looping plugin, are implemented. There are also lookup plugins like with_file
which load data from a file and ones for querying environment variables, DNS text records, or key value stores.
Lookup plugins can also be accessed in templates, e.g., {{ lookup('file','/path/to/file') }}.

Loops Generally, Ansible is not a programming language. It prefers to be more declarative, though various constructs
like with_items allow a particular task to be repeated for multiple items in a list. Certain modules, like yum
and apt, are actually optimized for this, and can install all packages given in those lists within a single transaction,
dramatically speeding up total time to configuration.

Modules Modules are the units of work that Ansible ships out to remote machines. Modules are kicked off by ei-
ther /usr/bin/ansible or /usr/bin/ansible-playbook (where multiple tasks use lots of different
modules in conjunction). Modules can be implemented in any language, including Perl, Bash, or Ruby – but
can leverage some useful communal library code if written in Python. Modules just have to return JSON. Once
modules are executed on remote machines, they are removed, so no long running daemons are used. Ansible
refers to the collection of available modules as a library.

Multi-Tier The concept that IT systems are not managed one system at a time, but by interactions between multiple
systems and groups of systems in well defined orders. For instance, a web server may need to be updated
before a database server and pieces on the web server may need to be updated after THAT database server and
various load balancers and monitoring servers may need to be contacted. Ansible models entire IT topologies
and workflows rather than looking at configuration from a “one system at a time” perspective.

Notify The act of a task registering a change event and informing a handler task that another action needs to be run
at the end of the play. If a handler is notified by multiple tasks, it will still be run only once. Handlers are run in
the order they are listed, not in the order that they are notified.

Orchestration Many software automation systems use this word to mean different things. Ansible uses it as a
conductor would conduct an orchestra. A datacenter or cloud architecture is full of many systems, playing
many parts – web servers, database servers, maybe load balancers, monitoring systems, continuous integration
systems, etc. In performing any process, it is necessary to touch systems in particular orders, often to simulate

1.13. Glossary 365

Ansible 2.2 Documentation, 2.4

rolling updates or to deploy software correctly. Some system may perform some steps, then others, then previous
systems already processed may need to perform more steps. Along the way, emails may need to be sent or web
services contacted. Ansible orchestration is all about modeling that kind of process.

paramiko By default, Ansible manages machines over SSH. The library that Ansible uses by default to do this is
a Python-powered library called paramiko. The paramiko library is generally fast and easy to manage, though
users desiring Kerberos or Jump Host support may wish to switch to a native SSH binary such as OpenSSH by
specifying the connection type in their playbooks, or using the -c ssh flag.

Playbooks Playbooks are the language by which Ansible orchestrates, configures, administers, or deploys systems.
They are called playbooks partially because it’s a sports analogy, and it’s supposed to be fun using them. They
aren’t workbooks :)

Plays A playbook is a list of plays. A play is minimally a mapping between a set of hosts selected by a host specifier
(usually chosen by groups but sometimes by hostname globs) and the tasks which run on those hosts to define
the role that those systems will perform. There can be one or many plays in a playbook.

Pull Mode By default, Ansible runs in push mode, which allows it very fine-grained control over when it talks to
each system. Pull mode is provided for when you would rather have nodes check in every N minutes on a
particular schedule. It uses a program called ansible-pull and can also be set up (or reconfigured) using a
push-mode playbook. Most Ansible users use push mode, but pull mode is included for variety and the sake of
having choices.

ansible-pullworks by checking configuration orders out of git on a crontab and then managing the machine
locally, using the local connection plugin.

Push Mode Push mode is the default mode of Ansible. In fact, it’s not really a mode at all – it’s just how Ansible
works when you aren’t thinking about it. Push mode allows Ansible to be fine-grained and conduct nodes
through complex orchestration processes without waiting for them to check in.

Register Variable The result of running any task in Ansible can be stored in a variable for use in a template or a
conditional statement. The keyword used to define the variable is called register, taking its name from the
idea of registers in assembly programming (though Ansible will never feel like assembly programming). There
are an infinite number of variable names you can use for registration.

Resource Model Ansible modules work in terms of resources. For instance, the file module will select a particular
file and ensure that the attributes of that resource match a particular model. As an example, we might wish to
change the owner of /etc/motd to root if it is not already set to root, or set its mode to 0644 if it is
not already set to 0644. The resource models are idempotent meaning change commands are not run unless
needed, and Ansible will bring the system back to a desired state regardless of the actual state – rather than you
having to tell it how to get to the state.

Roles Roles are units of organization in Ansible. Assigning a role to a group of hosts (or a set of groups, or host
patterns, etc.) implies that they should implement a specific behavior. A role may include applying certain
variable values, certain tasks, and certain handlers – or just one or more of these things. Because of the file
structure associated with a role, roles become redistributable units that allow you to share behavior among
playbooks – or even with other users.

Rolling Update The act of addressing a number of nodes in a group N at a time to avoid updating them all at once
and bringing the system offline. For instance, in a web topology of 500 nodes handling very large volume, it
may be reasonable to update 10 or 20 machines at a time, moving on to the next 10 or 20 when done. The
serial: keyword in an Ansible playbooks control the size of the rolling update pool. The default is to address
the batch size all at once, so this is something that you must opt-in to. OS configuration (such as making sure
config files are correct) does not typically have to use the rolling update model, but can do so if desired.

Serial

:

Rolling Update

366 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Sudo Ansible does not require root logins, and since it’s daemonless, definitely does not require root level daemons
(which can be a security concern in sensitive environments). Ansible can log in and perform many operations
wrapped in a sudo command, and can work with both password-less and password-based sudo. Some operations
that don’t normally work with sudo (like scp file transfer) can be achieved with Ansible’s copy, template, and
fetch modules while running in sudo mode.

SSH (Native) Native OpenSSH as an Ansible transport is specified with -c ssh (or a config file, or a directive in the
playbook) and can be useful if wanting to login via Kerberized SSH or using SSH jump hosts, etc. In 1.2.1, ssh
will be used by default if the OpenSSH binary on the control machine is sufficiently new. Previously, Ansible
selected paramiko as a default. Using a client that supports ControlMaster and ControlPersist is
recommended for maximum performance – if you don’t have that and don’t need Kerberos, jump hosts, or other
features, paramiko is a good choice. Ansible will warn you if it doesn’t detect ControlMaster/ControlPersist
capability.

Tags Ansible allows tagging resources in a playbook with arbitrary keywords, and then running only the parts of the
playbook that correspond to those keywords. For instance, it is possible to have an entire OS configuration, and
have certain steps labeled ntp, and then run just the ntp steps to reconfigure the time server information on a
remote host.

Tasks Playbooks exist to run tasks. Tasks combine an action (a module and its arguments) with a name and optionally
some other keywords (like looping directives). Handlers are also tasks, but they are a special kind of task that
do not run unless they are notified by name when a task reports an underlying change on a remote system.

Templates Ansible can easily transfer files to remote systems but often it is desirable to substitute variables in other
files. Variables may come from the inventory file, Host Vars, Group Vars, or Facts. Templates use the Jinja2
template engine and can also include logical constructs like loops and if statements.

Transport Ansible uses :term:Connection Plugins to define types of available transports. These are simply
how Ansible will reach out to managed systems. Transports included are paramiko, ssh (using OpenSSH), and
local.

When An optional conditional statement attached to a task that is used to determine if the task should run or not. If
the expression following the when: keyword evaluates to false, the task will be ignored.

Vars (Variables) As opposed to Facts, variables are names of values (they can be simple scalar values – integers,
booleans, strings) or complex ones (dictionaries/hashes, lists) that can be used in templates and playbooks. They
are declared things, not things that are inferred from the remote system’s current state or nature (which is what
Facts are).

YAML Ansible does not want to force people to write programming language code to automate infrastructure, so
Ansible uses YAML to define playbook configuration languages and also variable files. YAML is nice because it
has a minimum of syntax and is very clean and easy for people to skim. It is a good data format for configuration
files and humans, but also machine readable. Ansible’s usage of YAML stemmed from Michael DeHaan’s first
use of it inside of Cobbler around 2006. YAML is fairly popular in the dynamic language community and the
format has libraries available for serialization in many languages (Python, Perl, Ruby, etc.).

:

Frequently Asked Questions Frequently asked questions

Playbooks An introduction to playbooks

Best Practices Best practices advice

User Mailing List Have a question? Stop by the google group!

irc.freenode.net #ansible IRC chat channel

1.13. Glossary 367

http://groups.google.com/group/ansible-devel
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

YAML Syntax

This page provides a basic overview of correct YAML syntax, which is how Ansible playbooks (our configuration
management language) are expressed.

We use YAML because it is easier for humans to read and write than other common data formats like XML or JSON.
Further, there are libraries available in most programming languages for working with YAML.

You may also wish to read Playbooks at the same time to see how this is used in practice.

YAML Basics

For Ansible, nearly every YAML file starts with a list. Each item in the list is a list of key/value pairs, commonly
called a “hash” or a “dictionary”. So, we need to know how to write lists and dictionaries in YAML.

There’s another small quirk to YAML. All YAML files (regardless of their association with Ansible or not) can op-
tionally begin with --- and end with This is part of the YAML format and indicates the start and end of a
document.

All members of a list are lines beginning at the same indentation level starting with a "- " (a dash and a space):

A list of tasty fruits
fruits:

- Apple
- Orange
- Strawberry
- Mango

...

A dictionary is represented in a simple key: value form (the colon must be followed by a space):

An employee record
martin:

name: Martin D'vloper
job: Developer
skill: Elite

More complicated data structures are possible, such as lists of dictionaries, dictionaries whose values are lists or a mix
of both:

Employee records
- martin:

name: Martin D'vloper
job: Developer
skills:

- python
- perl
- pascal

- tabitha:
name: Tabitha Bitumen
job: Developer
skills:

- lisp
- fortran
- erlang

368 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Dictionaries and lists can also be represented in an abbreviated form if you really want to:

martin: {name: Martin D'vloper, job: Developer, skill: Elite}
fruits: ['Apple', 'Orange', 'Strawberry', 'Mango']

Ansible doesn’t really use these too much, but you can also specify a boolean value (true/false) in several forms:

create_key: yes
needs_agent: no
knows_oop: True
likes_emacs: TRUE
uses_cvs: false

Values can span multiple lines using | or >. Spanning multiple lines using a | will include the newlines. Using a >
will ignore newlines; it’s used to make what would otherwise be a very long line easier to read and edit. In either case
the indentation will be ignored. Examples are:

include_newlines: |
exactly as you see
will appear these three
lines of poetry

ignore_newlines: >
this is really a
single line of text
despite appearances

Let’s combine what we learned so far in an arbitrary YAML example. This really has nothing to do with Ansible, but
will give you a feel for the format:

An employee record
name: Martin D'vloper
job: Developer
skill: Elite
employed: True
foods:

- Apple
- Orange
- Strawberry
- Mango

languages:
perl: Elite
python: Elite
pascal: Lame

education: |
4 GCSEs
3 A-Levels
BSc in the Internet of Things

That’s all you really need to know about YAML to start writing Ansible playbooks.

Gotchas

While YAML is generally friendly, the following is going to result in a YAML syntax error:

1.14. YAML Syntax 369

Ansible 2.2 Documentation, 2.4

foo: somebody said I should put a colon here: so I did

windows_drive: c:

...but this will work:

windows_path: c:\windows

You will want to quote hash values using colons followed by a space or the end of the line:

foo: "somebody said I should put a colon here: so I did"

windows_drive: "c:"

...and then the colon will be preserved.

Further, Ansible uses “{{ var }}” for variables. If a value after a colon starts with a “{”, YAML will think it is a
dictionary, so you must quote it, like so:

foo: "{{ variable }}"

If your value starts with a quote the entire value must be quoted, not just part of it. Here are some additional examples
of how to properly quote things:

foo: "{{ variable }}/additional/string/literal"
foo2: "{{ variable }}\\backslashes\\are\\also\\special\\characters"
foo3: "even if it's just a string literal it must all be quoted"

Not valid:

foo: "E:\\path\\"rest\\of\\path

The same applies for strings that start or contain any YAML special characters [] {} : > | .

Boolean conversion is helpful, but this can be a problem when you want a literal yes or other boolean values as a string.
In these cases just use quotes:

non_boolean: "yes"
other_string: "False"

YAML converts certain strings into floating-point values, such as the string 1.0. If you need to specify a version
number (in a requirements.yml file, for example), you will need to quote the value if it looks like a floating-point
value:

version: "1.0"

:

Playbooks Learn what playbooks can do and how to write/run them.

YAMLLint YAML Lint (online) helps you debug YAML syntax if you are having problems

Github examples directory Complete playbook files from the github project source

Wikipedia YAML syntax reference A good guide to YAML syntax

Mailing List Questions? Help? Ideas? Stop by the list on Google Groups

irc.freenode.net #ansible IRC chat channel

370 Chapter 1. About Ansible

http://yamllint.com/
https://github.com/ansible/ansible-examples
https://en.wikipedia.org/wiki/YAML
http://groups.google.com/group/ansible-project
http://irc.freenode.net

Ansible 2.2 Documentation, 2.4

Porting Guide

Playbook

• backslash escapes When specifying parameters in jinja2 expressions in YAML dicts, backslashes sometimes
needed to be escaped twice. This has been fixed in 2.0.x so that escaping once works. The following example
shows how playbooks must be modified:

Syntax in 1.9.x
- debug:

msg: "{{ 'test1_junk 1\\\\3' | regex_replace('(.*)_junk (.*)', '\\\\1 \\\\2')
→˓}}"
Syntax in 2.0.x
- debug:

msg: "{{ 'test1_junk 1\\3' | regex_replace('(.*)_junk (.*)', '\\1 \\2') }}"

Output:
"msg": "test1 1\\3"

To make an escaped string that will work on all versions you have two options:

- debug: msg="{{ 'test1_junk 1\\3' | regex_replace('(.*)_junk (.*)', '\\1 \\2') }}"

uses key=value escaping which has not changed. The other option is to check for the ansible version:

"{{ (ansible_version|version_compare('2.0', 'ge'))|ternary('test1_junk 1\\3' | regex_
→˓replace('(.*)_junk (.*)', '\\1 \\2') , 'test1_junk 1\\\\3' | regex_replace('(.*)_
→˓junk (.*)', '\\\\1 \\\\2')) }}"

• trailing newline When a string with a trailing newline was specified in the playbook via yaml dict format, the
trailing newline was stripped. When specified in key=value format, the trailing newlines were kept. In v2, both
methods of specifying the string will keep the trailing newlines. If you relied on the trailing newline being
stripped, you can change your playbook using the following as an example:

Syntax in 1.9.x
vars:
message: >

Testing
some things

tasks:
- debug:

msg: "{{ message }}"

Syntax in 2.0.x
vars:
old_message: >

Testing
some things

message: "{{ old_messsage[:-1] }}"
- debug:

msg: "{{ message }}"
Output
"msg": "Testing some things"

• Behavior of templating DOS-type text files changes with Ansible v2.

1.15. Porting Guide 371

Ansible 2.2 Documentation, 2.4

A bug in Ansible v1 causes DOS-type text files (using a carriage return and newline) to be templated to Unix-
type text files (using only a newline). In Ansible v2 this long-standing bug was finally fixed and DOS-type text
files are preserved correctly. This may be confusing when you expect your playbook to not show any differences
when migrating to Ansible v2, while in fact you will see every DOS-type file being completely replaced (with
what appears to be the exact same content).

• When specifying complex args as a variable, the variable must use the full jinja2 variable syntax
(`{{var_name}}`) - bare variable names there are no longer accepted. In fact, even specifying args with
variables has been deprecated, and will not be allowed in future versions:

- hosts: localhost
connection: local
gather_facts: false
vars:

my_dirs:
- { path: /tmp/3a, state: directory, mode: 0755 }
- { path: /tmp/3b, state: directory, mode: 0700 }

tasks:
- file:

args: "{{item}}" # <- args here uses the full variable syntax
with_items: "{{my_dirs}}"

• porting task includes

• More dynamic. Corner-case formats that were not supposed to work now do not, as expected.

• variables defined in the yaml dict format https://github.com/ansible/ansible/issues/13324

• templating (variables in playbooks and template lookups) has improved with regard to keeping the original
instead of turning everything into a string. If you need the old behavior, quote the value to pass it around as a
string.

• Empty variables and variables set to null in yaml are no longer converted to empty strings. They will retain the
value of None. You can override the null_representation setting to an empty string in your config file by setting
the ANSIBLE_NULL_REPRESENTATION environment variable.

• Extras callbacks must be whitelisted in ansible.cfg. Copying is no longer necessary but whitelisting in ansi-
ble.cfg must be completed.

• dnf module has been rewritten. Some minor changes in behavior may be observed.

• win_updates has been rewritten and works as expected now.

• from 2.0.1 onwards, the implicit setup task from gather_facts now correctly inherits everything from play, but
this might cause issues for those setting environment at the play level and depending on ansible_env existing.
Previouslly this was ignored but now might issue an ‘Undefined’ error.

Deprecated

While all items listed here will show a deprecation warning message, they still work as they did in 1.9.x. Please note
that they will be removed in 2.2 (Ansible always waits two major releases to remove a deprecated feature).

• Bare variables in with_ loops should instead use the “{{var}}” syntax, which helps eliminate ambiguity.

• The ansible-galaxy text format requirements file. Users should use the YAML format for requirements instead.

• Undefined variables within a with_ loop’s list currently do not interrupt the loop, but they do issue a warning; in
the future, they will issue an error.

372 Chapter 1. About Ansible

https://github.com/ansible/ansible/issues/13324

Ansible 2.2 Documentation, 2.4

• Using dictionary variables to set all task parameters is unsafe and will be removed in a future version. For
example:

- hosts: localhost
gather_facts: no
vars:

debug_params:
msg: "hello there"

tasks:
These are both deprecated:
- debug: "{{debug_params}}"
- debug:
args: "{{debug_params}}"

Use this instead:
- debug:

msg: "{{debug_params['msg']}}"

• Host patterns should use a comma (,) or colon (:) instead of a semicolon (;) to separate hosts/groups in the
pattern.

• Ranges specified in host patterns should use the [x:y] syntax, instead of [x-y].

• Playbooks using privilege escalation should always use “become*” options rather than the old su*/sudo* op-
tions.

• The “short form” for vars_prompt is no longer supported. For example:

vars_prompt:
variable_name: "Prompt string"

• Specifying variables at the top level of a task include statement is no longer supported. For example:

- include: foo.yml
a: 1

Should now be:

- include: foo.yml
vars:
a: 1

• Setting any_errors_fatal on a task is no longer supported. This should be set at the play level only.

• Bare variables in the environment dictionary (for plays/tasks/etc.) are no longer supported. Variables specified
there should use the full variable syntax: ‘{{foo}}’.

• Tags (or any directive) should no longer be specified with other parameters in a task include. Instead, they
should be specified as an option on the task. For example:

- include: foo.yml tags=a,b,c

Should be:

- include: foo.yml
tags: [a, b, c]

• The first_available_file option on tasks has been deprecated. Users should use the with_first_found option or
lookup (‘first_found’, . . .) plugin.

1.15. Porting Guide 373

Ansible 2.2 Documentation, 2.4

Other caveats

Here are some corner cases encountered when updating, these are mostly caused by the more stringent parser validation
and the capture of errors that were previouslly ignored.

• Bad variable composition:

with_items: myvar_{{rest_of_name}}

This worked ‘by accident’ as the errors were retemplated and ended up resolving the variable, it was never
intended as valid syntax and now properly returns an error, use the following instead.:

hostvars[inventory_hostname]['myvar_' + rest_of_name]

• Misspelled directives:

- task: dostuf
becom: yes

The task always ran without using privilege escalation (for that you need become) but was also silently ignored
so the play ‘ran’ even though it should not, now this is a parsing error.

• Duplicate directives:

- task: dostuf
when: True
when: False

The first when was ignored and only the 2nd one was used as the play ran w/o warning it was ignoring one of
the directives, now this produces a parsing error.

• Conflating variables and directives:

- role: {name=rosy, port=435 }

in tasks/main.yml
- wait_for: port={{port}}

The port variable is reserved as a play/task directive for overriding the connection port, in previous versions
this got conflated with a variable named port and was usable later in the play, this created issues if a host tried
to reconnect or was using a non caching connection. Now it will be correctly identified as a directive and the
port variable will appear as undefined, this now forces the use of non conflicting names and removes ambiguity
when adding settings and variables to a role invocation.

• Bare operations on with_:

with_items: var1 + var2

An issue with the ‘bare variable’ features, which was supposed only template a single variable without the need
of braces ({{)}}, would in some versions of Ansible template full expressions. Now you need to use proper
templating and braces for all expressions everywhere except conditionals (when):

with_items: "{{var1 + var2}}"

The bare feature itself is deprecated as an undefined variable is indistiguishable from a string which makes it
difficult to display a proper error.

374 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

Porting plugins

In ansible-1.9.x, you would generally copy an existing plugin to create a new one. Simply implementing the methods
and attributes that the caller of the plugin expected made it a plugin of that type. In ansible-2.0, most plugins are
implemented by subclassing a base class for each plugin type. This way the custom plugin does not need to contain
methods which are not customized.

Lookup plugins

• lookup plugins ; import version

Connection plugins

• connection plugins

Action plugins

• action plugins

Callback plugins

Although Ansible 2.0 provides a new callback API the old one continues to work for most callback plugins. However,
if your callback plugin makes use of self.playbook, self.play, or self.task then you will have to store
the values for these yourself as ansible no longer automatically populates the callback with them. Here’s a short
snippet that shows you how:

import os
from ansible.plugins.callback import CallbackBase

class CallbackModule(CallbackBase):
def __init__(self):

self.playbook = None
self.playbook_name = None
self.play = None
self.task = None

def v2_playbook_on_start(self, playbook):
self.playbook = playbook
self.playbook_name = os.path.basename(self.playbook._file_name)

def v2_playbook_on_play_start(self, play):
self.play = play

def v2_playbook_on_task_start(self, task, is_conditional):
self.task = task

def v2_on_any(self, *args, **kwargs):
self._display.display('%s: %s: %s' % (self.playbook_name,
self.play.name, self.task))

1.15. Porting Guide 375

Ansible 2.2 Documentation, 2.4

Connection plugins

• connection plugins

Hybrid plugins

In specific cases you may want a plugin that supports both ansible-1.9.x and ansible-2.0. Much like porting plugins
from v1 to v2, you need to understand how plugins work in each version and support both requirements. It may mean
playing tricks on Ansible.

Since the ansible-2.0 plugin system is more advanced, it is easier to adapt your plugin to provide similar pieces
(subclasses, methods) for ansible-1.9.x as ansible-2.0 expects. This way your code will look a lot cleaner.

You may find the following tips useful:

• Check whether the ansible-2.0 class(es) are available and if they are missing (ansible-1.9.x) mimic them with
the needed methods (e.g. __init__)

• When ansible-2.0 python modules are imported, and they fail (ansible-1.9.x), catch the ImportError excep-
tion and perform the equivalent imports for ansible-1.9.x. With possible translations (e.g. importing specific
methods).

• Use the existence of these methods as a qualifier to what version of Ansible you are running. So rather than
using version checks, you can do capability checks instead. (See examples below)

• Document for each if-then-else case for which specific version each block is needed. This will help others to
understand how they have to adapt their plugins, but it will also help you to remove the older ansible-1.9.x
support when it is deprecated.

• When doing plugin development, it is very useful to have the warning() method during development, but it
is also important to emit warnings for deadends (cases that you expect should never be triggered) or corner cases
(e.g. cases where you expect misconfigurations).

• It helps to look at other plugins in ansible-1.9.x and ansible-2.0 to understand how the API works and what
modules, classes and methods are available.

Lookup plugins

As a simple example we are going to make a hybrid fileglob lookup plugin. The fileglob lookup plugin is
pretty simple to understand

from __future__ import (absolute_import, division, print_function)
__metaclass__ = type

import os
import glob

try:
ansible-2.0
from ansible.plugins.lookup import LookupBase

except ImportError:
ansible-1.9.x

class LookupBase(object):
def __init__(self, basedir=None, runner=None, **kwargs):

self.runner = runner
self.basedir = self.runner.basedir

376 Chapter 1. About Ansible

Ansible 2.2 Documentation, 2.4

def get_basedir(self, variables):
return self.basedir

try:
ansible-1.9.x
from ansible.utils import (listify_lookup_plugin_terms, path_dwim, warning)

except ImportError:
ansible-2.0
from __main__ import display
warning = display.warning

class LookupModule(LookupBase):

For ansible-1.9.x, we added inject=None as valid argument
def run(self, terms, inject=None, variables=None, **kwargs):

ansible-2.0, but we made this work for ansible-1.9.x too !
basedir = self.get_basedir(variables)

ansible-1.9.x
if 'listify_lookup_plugin_terms' in globals():

terms = listify_lookup_plugin_terms(terms, basedir, inject)

ret = []
for term in terms:

term_file = os.path.basename(term)

For ansible-1.9.x, we imported path_dwim() from ansible.utils
if 'path_dwim' in globals():

ansible-1.9.x
dwimmed_path = path_dwim(basedir, os.path.dirname(term))

else:
ansible-2.0
dwimmed_path = self._loader.path_dwim_relative(basedir, 'files', os.

→˓path.dirname(term))

globbed = glob.glob(os.path.join(dwimmed_path, term_file))
ret.extend(g for g in globbed if os.path.isfile(g))

return ret

: In the above example we did not use the warning() method as we had no direct use for it in the final version.
However we left this code in so people can use this part during development/porting/use.

Connection plugins

• connection plugins

Action plugins

• action plugins

1.15. Porting Guide 377

Ansible 2.2 Documentation, 2.4

Callback plugins

• callback plugins

Connection plugins

• connection plugins

Porting custom scripts

Custom scripts that used the ansible.runner.Runner API in 1.x have to be ported in 2.x. Please refer to:
Python API

Python 3 Support

Ansible 2.2 features a tech preview of Python 3 support. This topic discusses how you can test to make sure your
modules and playbooks work with Python 3.

: Technology preview features provide early access to upcoming product innovations, enabling you to test func-
tionality and provide feedback during the development process. Please be aware that tech preview features may not
be functionally complete and are not intended for production use. To report a Python 3 bug, please see Community
Information & Contributing.

Testing Python 3 with commands and playbooks

• Install Ansible 2.2+

• To test Python 3 on the controller, run your ansible command via python3. For example:

python3 /usr/bin/ansible localhost -m ping
python3 /usr/bin/ansible-playbook sample-playbook.yml

Testing Python 3 module support

• Set the ansible_python_interpreter configuration option to /usr/bin/python3. The
ansible_python_interpreter configuration option is usually set per-host as an inventory vari-
able associated with a host or group of hosts:

Example inventory that makes an alias for localhost that uses python3
[py3-hosts]
localhost-py3 ansible_host=localhost ansible_connection=local

[py3-hosts:vars]
ansible_python_interpreter=/usr/bin/python3

See the :ref:`inventory documentation <inventory>` for more information.

• Run your command or playbook:

378 Chapter 1. About Ansible

http://docs.ansible.com/ansible/community.html#i-d-like-to-report-a-bug
http://docs.ansible.com/ansible/community.html#i-d-like-to-report-a-bug
http://docs.ansible.com/ansible/intro_installation.html

Ansible 2.2 Documentation, 2.4

ansible localhost-py3 -m ping
ansible-playbook sample-playbook.yml

Note that you can also use the -e command line option to manually set the python interpreter when you run a com-
mand. For example:

ansible localhost -m ping -e 'ansible_python_interpreter=/usr/bin/python3'
ansible-playbook sample-playbook.yml -e 'ansible_python_interpreter=/usr/bin/python3'

What to do if an incompatibility is found

If you find a bug while testing modules with Python3 you can submit a bug report on Ansible’s GitHub project. Be
sure to mention Python3 in the bug report so that the right people look at it.

If you would like to fix the code and submit a pull request on github, you can refer to Ansible and Python 3 for
information on how we fix common Python3 compatibility issues in the Ansible codebase.

1.16. Python 3 Support 379

https://github.com/ansible/ansible/issues/

Ansible 2.2 Documentation, 2.4

380 Chapter 1. About Ansible

A
Action, 363
Ad Hoc, 363
ANSIBLE_DEBUG, 285
ANSIBLE_KEEP_REMOTE_FILES, 268
ANSIBLE_LIBRARY, 253, 270
API_<MODULENAME>_USERNAME, 274
API_USERNAME, 274
Async, 363

C
Callback Plugin, 363
Check Mode, 363
Conditionals, 363
Connection Plugin, 363

D
Declarative, 363
Diff Mode, 363

E
Executor, 363

F
Facts, 363
Filter Plugin, 363
Forks, 364

G
Gather Facts (Boolean), 364
Globbing, 364
Group, 364
Group Vars, 364

H
Handlers, 364
Host, 364
Host Specifier, 364
Host Vars, 364

I
Idempotency, 364
Includes, 364
Inventory, 364
Inventory Script, 365

J
Jinja2, 365
JSON, 365

L
Lazy Evaluation, 365
Library, 365
Limit Groups, 365
Local Action, 365
Local Connection, 365
Lookup Plugin, 365
Loops, 365

M
Modules, 365
Multi-Tier, 365

N
Notify, 365

O
Orchestration, 365

P
paramiko, 366
Playbooks, 366
Plays, 366
Pull Mode, 366
Push Mode, 366

R
Register Variable, 366
Resource Model, 366
Roles, 366

381

Ansible 2.2 Documentation, 2.4

Rolling Update, 366

S
Serial, 366
SSH (Native), 367
Sudo, 367

T
Tags, 367
Tasks, 367
Templates, 367
Transport, 367

V
Vars (Variables), 367

W
When, 367

Y
YAML, 367

382

	About Ansible

